Chemical Research in Chinese Universities

, Volume 34, Issue 6, pp 978–982 | Cite as

Transient Optical Characteristics of Broad Absorption Band Excitons Modulated by Micro-cavity

  • Kaijiao Li
  • Zhenyu Zhang
  • Haining Cui
  • Haiyu Wang


The understanding of light-matter interaction within micro-cavity lays the basic groundwork for many future photon-related technologies and applications. We prepared low quality metal-insulator-metal(MIM) micro-cavity consisting massive two-level broad absorption band dye(Nile Red) excitons, which randomly dispersed in SU-8 polymer negative resist matrix and measured their optical characteristics. New binate transmission peaks with large energy separation(so-called Rabi-splitting phenomenon) and their angular anti-crossing behavior in con-sequence of the interaction between dye excitons and confined photons were observed. It was also confirmed that the separated energy can be tuned by changing the doped exciton concentrations. Time-resolved transient absorption measurements showed that such an interaction is indeed a coherent one but rather a strong coupling one and one can modulate such a coherent mechanism by easily adjusting the detuning between dye excitons and confined cavity photons. This work may provide a comprehensive and deep understanding for such massive broad absoprtion band excitons-doped MIM micro-cavities and represent a further step to realize optical cavity-modulated devices in future.


Interaction Exciton Micro-cavity Modulation Transient 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Zhang S., Genov D. A., Wang Y., Liu M., Zhang X., Phys. Rev. Lett., 2008, 101(4), 047401CrossRefGoogle Scholar
  2. [2]
    Wang X. D., Liao Q., Xu Z. Z., Wu Y. S., Wei L., Lu X. M., Fu H. B., ACS Photon., 2014, 1(5), 413CrossRefGoogle Scholar
  3. [3]
    Liu N., Weiss T., Mesch M., Langguth L., Eigenthaler U., Hirscher M., Sonnichsen C., Giessen H., Nano Lett., 2010, 10(4), 1103CrossRefGoogle Scholar
  4. [4]
    Vasa P., Pomraenke R., Cirmi G., De Re E., Wang W., Schwieger S., Leipold D., Runge E., Cerullo G., Lienau C., ACS Nano, 2010, 4(12), 7559CrossRefGoogle Scholar
  5. [5]
    Salomon A., Genet C., Ebbesen T. W., Angew. Chem. Int. Ed., 2009, 48(46), 8748CrossRefGoogle Scholar
  6. [6]
    Zhang Z. Y., Wang H. Y., Du J. L., Zhang, X. L., Hao Y. W., Chen Q. D., Sun H. B., Appl. Phys. Lett., 2014, 105(19), 191117CrossRefGoogle Scholar
  7. [7]
    Vakevainen A. I., Moerland R. J., Rekola H. T., Eskelinen A. P., Mar-tikainen J. P., Kim D. H., Torma P., Nano Lett., 2014, 14(4), 1721CrossRefGoogle Scholar
  8. [8]
    Hao Y. W., Wang H. Y., Jiang Y., Chen Q. D., Ueno K., Wang W. Q., Misawa H., Sun H. B., Angew. Chem. Int. Ed., 2011, 50(34), 7824CrossRefGoogle Scholar
  9. [9]
    Jouy P., Todorov Y., Vasanelli A., Colombelli R., Sagnes I., Sirtori C., Appl. Phys. Lett., 2011, 98(2), 021105CrossRefGoogle Scholar
  10. [10]
    Miller R., Northup T. E., Birnbaum K. M., Boca A., Boozer A. D., Kimble H. J., J. Phys. B: At. Mol. Opt., 2005, 38(9), 551CrossRefGoogle Scholar
  11. [11]
    Chen S. M., Li G. X., Lei D. Y., Cheah K. W., Nanoscale, 2013, 5(19), 9129CrossRefGoogle Scholar
  12. [12]
    Ameling R., Dregely D., Giessen H., Opt. Lett., 2011, 36, 2218CrossRefGoogle Scholar
  13. [13]
    Ameling R., Giessen H., Nano Lett., 2010, 10(11), 4394CrossRefGoogle Scholar
  14. [14]
    Shalabney A., George J., Hutchison J., Pupillo G., Genet C., Ebbesen T. W., Nat. Commun., 2015, 6, 5981CrossRefGoogle Scholar
  15. [15]
    Vahala K. J., Nature, 2003, 424(6950), 839CrossRefGoogle Scholar
  16. [16]
    McKeever J., Buck J. R., Boozer A. D., Kimble H. J., Phys. Rev. Lett., 2004, 93(14), 143601CrossRefGoogle Scholar
  17. [17]
    Chen L., Zhu Y. M., Zang X. F., Cai B., Li, Z., Xie L., Zhuang S. L., Light: Sci. Appl., 2013, 2, e60CrossRefGoogle Scholar
  18. [18]
    Zhang X. L., Feng J., Han X. C., Liu Y. F., Chen Q. D., Song J. F., Sun H. B., Optica, 2015, 2(6), 579CrossRefGoogle Scholar
  19. [19]
    Jaynes E. T., Cummings F. W., Proc. IEEE, 1963, 51, 89CrossRefGoogle Scholar
  20. [20]
    Tischler J. R., Bradley M. S., Bulovic V., Song J. H., Nurmikko A., Phys. Rev. Lett., 2005, 95(3), 036401CrossRefGoogle Scholar
  21. [21]
    Peter E., Senellart P., Martrou D., Lemaitre A., Hours J., Gerard J. M., Bloch J., Phys. Rev. Lett., 2005, 95(6), 067401CrossRefGoogle Scholar
  22. [22]
    Dousse A., Lanco L., Suffczynski J., Semenova E., Miard A., Lemai-tre A., Sagnes I., Roblin C., Bloch J., Senellart P., Phys. Rev. Lett., 2008, 101(26), 267404CrossRefGoogle Scholar
  23. [23]
    Quesada N., Phys. Rev. A, 2012, 86(1), 013836CrossRefGoogle Scholar
  24. [24]
    Tessier T. E., Deutsch I. H., Delgado A., Fuentes-Guridi I., Phys. Rev. A, 2003, 68(6), 062316CrossRefGoogle Scholar
  25. [25]
    Zhang G. F., Chen Z. Y., Opt. Commun., 2007, 275(1), 274CrossRefGoogle Scholar
  26. [26]
    Brune M., Schmidt-Kaler F., Maali A., Dreyer J., Hagley E., Raimond J. M., Haroche S., Phys. Rev. Lett., 1996, 76(11), 1800CrossRefGoogle Scholar
  27. [27]
    Raimond J. M., Brune M., Haroche S., Rev. Mod. Phys., 2001, 73(3), 565CrossRefGoogle Scholar
  28. [28]
    Mabuchi H., Doherty A. C., Science, 2002, 298(5597), 1372CrossRefGoogle Scholar
  29. [29]
    Brune M., Schmidt-Kaler F., Maali A., Dreyer J., Hagley E., Raimond J. M., Haroche S., Nature, 2003, 425(6955), 268CrossRefGoogle Scholar
  30. [30]
    Ferry V. E., Sweatlock L. A., Pacifici D., Atwater H. A., Nano Lett., 2008, 8(12), 4391CrossRefGoogle Scholar
  31. [31]
    Hayashi S., Ishigaki Y., Fujii M., Phys. Rev. B, 2012, 86(4), 45408CrossRefGoogle Scholar
  32. [32]
    Finlayson C. E., Vijaya Prakash G., Baumberg J. J., Appl. Phys. Lett., 2005, 86(4), 041110CrossRefGoogle Scholar
  33. [33]
    Fofang N. T., Park T. H., Neumann O., Mirin N. A., Nordlander P., Halas N. J., Nano Lett., 2008, 8(10), 1297CrossRefGoogle Scholar
  34. [34]
    Ameling R., Dregely D., Giessen H., Opt. Lett., 2011, 36(12), 2218CrossRefGoogle Scholar
  35. [35]
    Banihashemi M., Nakamura T., Kojima T., Kojima K., Noda S., Ahmadi V., Appl. Phys. Lett., 2013, 103(25), 251113CrossRefGoogle Scholar
  36. [36]
    Kéna-Cohen S., Maier S. A., Bradley D. D. C., Adv. Opt. Mater., 2013, 1(11), 827CrossRefGoogle Scholar
  37. [37]
    Schwartz T., Hutchison J. A., Leonard J., Genet C., Haacke S., Ebbesen T. W., Chem. Phys. Chem., 2013, 14(1), 125CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and EngineeringJilin UniversityChangchunP. R. China
  2. 2.College of PhysicsJilin UniversityChangchunP. R. China
  3. 3.Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic EngineeringShenzhen UniversityShenzhenP. R. China

Personalised recommendations