Advertisement

Chemical Research in Chinese Universities

, Volume 34, Issue 6, pp 983–988 | Cite as

Facile Self-templating Melting Route Preparation of Biomass-derived Hierarchical Porous Carbon for Advanced Supercapacitors

  • Can Wang
  • Dianyu Wang
  • Shuang Zheng
  • Xueqing Fang
  • Wenli Zhang
  • Ye Tian
  • Haibo LinEmail author
  • Haiyan LuEmail author
  • Lei Jiang
Article
  • 24 Downloads

Abstract

Biomass-derived porous carbons show great potential as electrode materials for supercapacitors due to the environmental friendliness. However, most of the carbonaceous electrode materials suffer from low specific capacitance and rate capacity because of the poor porosity. Here, we reported a simple and effective approach to prepare micro/nano-hierarchical structured carbon materials derived from rice husk by NaOH-KOH molten salt co-activation. The as-prepared activated carbons exhibit high porosity and suitable pore size distributions for more electrolyte ion adsorption, which are all beneficial for achieving remarkable electrochemical performances, such as high specific capacitance(194.6 F/g), excellent rate capability(retention of 85.9%) and outstanding cycling stability. Thus, the above biomass-derived carbon materials with high porosity and micro/nano structures obtained by co-activation method offered a new insight into novel electrode material for the use in energy storage systems with high energy density and excellent rate performance.

Keywords

Porosity co-Activation Electrode material Electrolyte Supercapacitor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2018_8127_MOESM1_ESM.pdf (219 kb)
Facile self-templating melting route preparation of biomass-derived hierarchical porous carbon for advanced supercapacitors

References

  1. [1]
    Wang Y., Song Y., Xia Y., Chem. Soc. Rev., 2016, 45(21), 5925CrossRefGoogle Scholar
  2. [2]
    Jung D. S., Ryou M. H., Sung Y. J., Park S. B., Choi J. W., Proc. Natl. Acad. Sci. USA, 2013, 110(30), 12229CrossRefGoogle Scholar
  3. [3]
    Ding J., Wang H., Li Z., Cui K., Karpuzov D., Tan X., Kohandehghan A., Mitlin D., Energy Environ. Sci., 2015, 8(3), 941CrossRefGoogle Scholar
  4. [4]
    Jiang J., Zhu J., Ai W., Fan Z., Shen X., Zou C., Liu J., Zhang H., Yu T., Energy Environ. Sci., 2014, 7(8), 2670CrossRefGoogle Scholar
  5. [5]
    Wang G., Zhang L., Zhang J., Chem. Soc. Rev., 2012, 41(2), 797CrossRefGoogle Scholar
  6. [6]
    Simon P., Gogotsi Y., Nat. Mater., 2008, 7(11), 845CrossRefGoogle Scholar
  7. [7]
    Yan J., Wang Q., Wei T., Fan Z., Adv. Energy Mater., 2014, 4(4), 1300816CrossRefGoogle Scholar
  8. [8]
    Hartmann M., Schwieger W., Chem. Soc. Rev., 2016, 45(12), 3311CrossRefGoogle Scholar
  9. [9]
    Dutta S., Bhaumik A., Wu K. C. W., Energy Environ. Sci., 2014, 7(11), 3574CrossRefGoogle Scholar
  10. [10]
    Rose M., Korenblit Y., Kockrick E., Borchardt L., Oschatz M., Kaskel S., Yushin G., Small, 2011, 7(8), 1108CrossRefGoogle Scholar
  11. [11]
    Song S., Ma F., Wu G., Ma D., Geng W., Wan J., J. Mater. Chem. A, 2015, 3(35), 18154CrossRefGoogle Scholar
  12. [12]
    Chen J., Zhou X., Mei C., Xu J., Zhou S., Wong C. P., J. Power Sources, 2017, 342, 48CrossRefGoogle Scholar
  13. [13]
    Frackowiak E., Phys. Chem. Chem. Phys., 2007, 9(15), 1774CrossRefGoogle Scholar
  14. [14]
    Sudhan N., Subramani K., Karnan M., Ilayaraja N., Sathish M., Energy Fuels, 2017, 31(1), 977CrossRefGoogle Scholar
  15. [15]
    Xu G., Han J., Ding B., Nie P., Pan J., Dou H., Li H., Zhang X., Green Chem., 2015, 17(3), 1668CrossRefGoogle Scholar
  16. [16]
    Bhattacharjya D., Yu J. S., J. Power Sources, 2014, 262, 224CrossRefGoogle Scholar
  17. [17]
    Lai F., Miao Y. E., Zuo L., Lu H., Huang Y., Liu T., Small, 2016, 12(24), 3235CrossRefGoogle Scholar
  18. [18]
    Teo E. Y. L., Muniandy L., Ng E. P., Adam F., Mohamed A. R., Jose R., Chong K. F., Electrochim. Acta, 2016, 192, 110CrossRefGoogle Scholar
  19. [19]
    Lozano-Castello D., Lillo-Rodenas M., Cazorla-Amorós D., Li-nares-Solano A., Carbon, 2001, 39(5), 741CrossRefGoogle Scholar
  20. [20]
    Lillo-Ródenas M., Lozano-Castelló D., Cazorla-Amorós D., Li-nares-Solano A., Carbon, 2001, 39(5), 751CrossRefGoogle Scholar
  21. [21]
    Hu C., Xi Y., Liu H., Wang Z. L., J. Mater. Chem., 2009, 19(7), 858CrossRefGoogle Scholar
  22. [22]
    Liu X., Fechler N., Antonietti M., Chem. Soc. Rev., 2013, 42(21), 8237CrossRefGoogle Scholar
  23. [23]
    Beguin F., Presser V., Balducci A., Frackowiak E., Adv. Mater., 2014, 26(14), 2219CrossRefGoogle Scholar
  24. [24]
    Zanin H., Saito E., Ceragioli H. J., Baranauskas V., Corat E. J., Mater. Res. Bull., 2014, 49, 487CrossRefGoogle Scholar
  25. [25]
    Tabata S., Iida H., Horie T., Yamada S., Med. Chem. Comm., 2010, 1(2), 136CrossRefGoogle Scholar
  26. [26]
    Wang D., Fang G., Xue T., Ma J., Geng G., J. Power Sources, 2016, 307, 401CrossRefGoogle Scholar
  27. [27]
    Liu D., Zhang W., Lin H., Li Y., Lu H., Wang Y., RSC Advances, 2015, 5(25), 19294CrossRefGoogle Scholar
  28. [28]
    Muniandy L., Adam F., Mohamed A. R., Ng E. P., Microporous Mesoporous Mater., 2014, 197, 316CrossRefGoogle Scholar
  29. [29]
    Roldan S., Villar I., Rui’z V., Blanco C., Granda M., Menendez R., Santamariá R., Energy Fuels, 2010, 24(6), 3422CrossRefGoogle Scholar
  30. [30]
    Liang Q., Ye L., Huang Z. H., Xu Q., Bai Y., Kang F., Yang Q. H., Nanoscale, 2014, 6(22), 13831CrossRefGoogle Scholar
  31. [31]
    Zhang L., Zhang F., Yang X., Leng K., Huang Y., Chen Y., Small, 2013, 9(8), 1342CrossRefGoogle Scholar
  32. [32]
    Chang J. L., Gao Z. Y., Wang X. R., Wu D. P., Xu F., Wang X., Guo Y. M., Jiang K., Electrochim. Acta, 2015, 157, 290CrossRefGoogle Scholar
  33. [33]
    Hou J. H., Cao C. B., Idrees F., Ma X. L., ACS Nano, 2015, 9(3), 2556CrossRefGoogle Scholar
  34. [34]
    Zhang W., Lin H., Lin Z., Yin J., Lu H., Liu D., Zhao M., ChemSus-Chem, 2015, 8(12), 2114CrossRefGoogle Scholar
  35. [35]
    Chmiola J., Yushin G., Gogotsi Y., Portet C., Simon P., Taberna P. L., Science, 2006, 313(5794), 1760CrossRefGoogle Scholar
  36. [36]
    Wei X. J., Li Y. B., Gao S. Y., J. Mater. Chem. A, 2017, 5(1), 181CrossRefGoogle Scholar
  37. [37]
    Yaddanapudi H. S., Tian K., Teng S., Tiwari A., Sci. Rep., 2016, 6, 9CrossRefGoogle Scholar
  38. [38]
    Li X., Han C., Chen X., Shi C., Microporous Mesoporous Mater., 2010, 131(13), 303Google Scholar
  39. [39]
    Gao X. L., Xing W., Zhou J., Wang G. Q., Zhuo S. P., Liu Z., Xue Q. Z., Yan Z. F., Electrochim. Acta, 2014, 133, 459CrossRefGoogle Scholar
  40. [40]
    Zhang Y. Y., Gao Z., Song N. N., Li X. D., Electrochim. Acta, 2016, 222, 1257CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Can Wang
    • 1
  • Dianyu Wang
    • 1
  • Shuang Zheng
    • 2
  • Xueqing Fang
    • 3
  • Wenli Zhang
    • 1
  • Ye Tian
    • 4
  • Haibo Lin
    • 1
    • 5
    Email author
  • Haiyan Lu
    • 1
    • 5
    Email author
  • Lei Jiang
    • 4
    • 6
  1. 1.College of ChemistryJilin UniversityChangchunP. R. China
  2. 2.University of Chinese Academy of SciencesBeijingP. R. China
  3. 3.School of Materials Science and EngineeringTianjin UniversityTianjinP. R. China
  4. 4.Technical Institute of Physics and ChemistryChinese Academy of SciencesBeijingP. R. China
  5. 5.Guangdong Guanghua Sci-Tech Co., Ltd.ShantouP. R. China
  6. 6.School of ChemistryBeihang UniversityBeijingP. R. China

Personalised recommendations