Advertisement

Chemical Research in Chinese Universities

, Volume 34, Issue 5, pp 772–780 | Cite as

Multispectral Plasmon of Anisotropic Core-shell Gold Nanorods@SiO2: Dual-band Absorption Enhancement with Coupling Dye Molecules

  • Yuping Che
  • Yang Wang
  • Tingting You
  • Huaiqiu Chang
  • Penggang Yin
  • Jin Zhai
Article
  • 27 Downloads

Abstract

Direct evidence of effects of surface plasmon resonance(SPR) of gold nanorods(GNRs) on dual-band light absorption enhancement with coupling dye molecules was reported by introducing gold nanorod@SiO2(GNR@SiO2) core-shell nanoparticles into a photoelectric conversion system. GNR with asymmetric shape had unusual anisotropic SPR[transversal surface plasmon resonance(TSPR) and longitudinal surface plasmon resonance(LSPR)]. The excel-lent SPR of GNR made it a promising candidate as enhancing light absorption material to increase power conversion efficiency(PCE). The PCE was improved nearly 17.2% upon incorporating GNRs, mostly due to the increase in Jsc, while Voc and FF were unchanged. The improvement was mostly contributed by the SPR of the GNRs with coupling of N719. And there was also a complementary to N719 in visible light range. Therefore, SPR is an effective tool in improving the photocurrent and consequently enhancement of PCE. The TSPR and LSPR effects of GNRs on light harvesting were reflected in the increased monochromatic incident photon-to-electron conversion efficiency(IPCE). We also utilized finite-difference time-domain(FDTD) to investigate the light coupling of GNRs with TiO2. Compare to the base anode, the IPCE of optimized electrode showed significant improvement and peaks broadening at 500–600 nm and 610–710 nm. We got an increase in overall conversion efficiency from 6.4% to 7.5%.

Keywords

Gold nanorod Plasmon Dual-band absorption Dye-sensitized solar cell(DSSC) N719 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    McJeon H., Edmonds J., Bauer N., Clarke L., Fisher B., Flannery B. P., Hilaire J., Krey V., Marangoni G., Mi R., Riahi K., Rogner H., Tavoni M., Nature, 2014, 514(7523), 482CrossRefPubMedGoogle Scholar
  2. [2]
    O’Regan B., Grrätzel M., Nature, 1991, 353(6346), 737CrossRefGoogle Scholar
  3. [3]
    Snaith H. J., Adv. Funct. Mater., 2010, 20(1), 13CrossRefGoogle Scholar
  4. [4]
    Jeon I. Y., Kim H. M., Choi I. T., Lim K., Ko J., Kim J. C., Choi H. J., Ju M. J., Lee J. J., Kim H. K., Baek J. B., Nano Energy, 2015, 13, 336CrossRefGoogle Scholar
  5. [5]
    Li L. L., Diau E. W. G., Chem. Soc. Rev., 2013, 42(1), 291CrossRefPubMedGoogle Scholar
  6. [6]
    Wu Y. Z., Marszalek M., Zakeeruddin S. M., Zhang Q., Tian H., Grätzel M., Zhu W. H., Energy Environ. Sci., 2012, 5, 8261CrossRefGoogle Scholar
  7. [7]
    Dong H., Wu Z., Lu F., Gao Y., El-Shafei A., Jiao B., Ning S., Hou X., Nano Energy, 2014, 10, 181CrossRefGoogle Scholar
  8. [8]
    Kim S. S., Na S. I., Jo J., Kim D. Y., Nah Y. C., Appl. Phys. Lett., 2008, 93(7), 073307CrossRefGoogle Scholar
  9. [9]
    Kawawaki T., Takahashi Y., Tatsuma T., J. Phys. Chem. C, 2013, 117(11), 5901CrossRefGoogle Scholar
  10. [10]
    Katherine A. W., Richard P. V. D., Annu. Rev. Phys. Chem., 2007, 58, 267CrossRefGoogle Scholar
  11. [11]
    Nishijima Y., Ueno K., Yokota Y., Murakoshi K., Misawa H., J. Phys. Chem. Lett., 2010, 1(13), 2031CrossRefGoogle Scholar
  12. [12]
    Standridge S. D., Schatz G. C., Hupp J. T., Langmuir, 2009, 25(5), 2596CrossRefPubMedGoogle Scholar
  13. [13]
    Paz-Soldan D., Lee A., Thon S. M., Adachi M. M., Dong H., Maraghechi P., Yuan M., Labelle A. J., Hoogland S., Liu K., Ku-macheva E., Sargent E. H., Nano Lett., 2013, 13(4), 1502CrossRefPubMedGoogle Scholar
  14. [14]
    Wang Y., Zhai J., Song Y. L., Lin J., Yin P. G., Guo L., Adv. Mater. Interfaces, 2015, 2(17), 1500383CrossRefGoogle Scholar
  15. [15]
    Choi H., Chen W. T., Kamat P. V., ACS Nano, 2012, 6(5), 4418CrossRefPubMedGoogle Scholar
  16. [16]
    Brown M. D., Suteewong T., Kumar R. S. S., D’Innocenzo V., Petrozza A., Lee M. M., Wiesner U., Snaith H. J., Nano Lett., 2011, 11(2), 438CrossRefPubMedGoogle Scholar
  17. [17]
    Qi J. F., Dang X. N., Hammond P. T., Belcher A. M., ACS Nano, 2011, 5(9), 7108CrossRefPubMedGoogle Scholar
  18. [18]
    Du J., Qi J., Wang D., Tang Z. Y., Energ. Environ. Sci., 2012, 5(5), 6914CrossRefGoogle Scholar
  19. [19]
    Standridge S. D., Schatz G. C., Hupp J. T., J. Am. Chem. Soc., 2009, 131(24), 8407CrossRefPubMedGoogle Scholar
  20. [20]
    Kamat P. V., J. Phys. Chem. C, 2007, 111(7), 2834CrossRefGoogle Scholar
  21. [21]
    Kamat P. V., J. Phys. Chem. B, 2002, 106(32), 7729CrossRefGoogle Scholar
  22. [22]
    Wang Y., Zhai J., Song Y. L., He L., Chem. Commun., 2016, 52(11), 2390CrossRefGoogle Scholar
  23. [23]
    Ihara M., Tanaka K., Sakaki K., Honma I., Yamada K., J. Phys. Chem. B, 1997, 101(26), 5153CrossRefGoogle Scholar
  24. [24]
    Murphy C. J., Sau T. K., Gole A. M., Orendorff C. J., Gao J. X., Guo L. F., Hunyadi S. E., Li T., J. Phys. Chem. B, 2005, 109(29), 13857CrossRefPubMedGoogle Scholar
  25. [25]
    Tanvi, Mahajan A., Bedi R. K., Kumar S., Saxena V., Singh A., As-wal D. K., RSC Adv., 2016, 6(53), 48064CrossRefGoogle Scholar
  26. [26]
    Wang Y., Zhai J., Song Y. L., RSC Adv., 2015, 5(1), 210CrossRefGoogle Scholar
  27. [27]
    Al-Azawi M. A., Bidin N., Abbas K. N., Bououdina M., Azzez S. A., J. Nanophotonics, 2016, 10(2), 026009CrossRefGoogle Scholar
  28. [28]
    Vigderman L., Khanal B. P., Zubarev E. R., Adv. Mater., 2012, 24(36), 4811CrossRefPubMedGoogle Scholar
  29. [29]
    Sönnichsen C., Franzl T., Wilk T., von Plessen G., Feldmann J., Wil-son O., Mulvaney P., Phys. Rev. Lett., 2002, 88(7), 007402CrossRefGoogle Scholar
  30. [30]
    Lim S. P., Lim Y. S., Pandikumar A., Lim H. N., Ng Y. H., Ramaraj R., Bien D. C. S., Abou-Zied O. K., Huang N. M., Phys. Chem. Chem. Phys., 2017, 19(2), 1395CrossRefPubMedGoogle Scholar
  31. [31]
    Lim S. P., Pandikumar A., Huang N. M., Lim H. N., Int. J. Hydrogen Energy, 2014, 39(27), 14720CrossRefGoogle Scholar
  32. [32]
    Du J. M., Zhang J. L., Liu Z. M., Han B. X., Jiang T., Huang Y., Langmuir, 2006, 22(3), 1307CrossRefPubMedGoogle Scholar
  33. [33]
    Ni W. H., Kou X. S., Yang Z., Wang J. F., ACS Nano, 2008, 2(4), 677CrossRefPubMedGoogle Scholar
  34. [34]
    Kou X. S., Zhang S. Z., Tsung C. K., Yang Z., Yeung M. H., Stucky G. D., Sun L. D., Wang J. F., Yan C. H., Chem. Eur. J., 2007, 13(10), 2929CrossRefPubMedGoogle Scholar
  35. [35]
    Perez-Juste J., Pastoriza-Santos I., Liz-Marzan L. M., Mulvaney P., Coordin. Chem. Rev., 2005, 249(17/18), 1870CrossRefGoogle Scholar
  36. [36]
    Gole A., Murphy C. J., Langmuir, 2008, 24(1), 266CrossRefPubMedGoogle Scholar
  37. [37]
    Graf C., Vossen D. L. J., Imhof A., van Blaaderen A., Langmuir, 2003, 19(17), 6693CrossRefGoogle Scholar
  38. [38]
    Zhan Q. Q., Qian J., Li X., He S. L., Nanotechnology, 2010, 21(5), 055704CrossRefPubMedGoogle Scholar
  39. [39]
    Johnson C. J., Dujardin E., Davis S. A., Murphy C. J., Mann S., J. Mater. Chem., 2002, 12(6), 1765CrossRefGoogle Scholar
  40. [40]
    Chang S., Li Q., Xiao X. D., Wong K. Y., Chen T., Energ. Environ. Sci., 2012, 5(11), 9444CrossRefGoogle Scholar
  41. [41]
    Ding B., Lee B. J., Yang M. J., Jung H. S., Lee J. K., Adv. Energy Mater., 2011, 1(3), 415CrossRefGoogle Scholar
  42. [42]
    Shao L., Fang C. H., Chen H. J., Man Y. C., Wang J. F., Lin H. Q., Nano Lett., 2012, 12(3), 1424CrossRefPubMedGoogle Scholar
  43. [43]
    Liu Y. M., Zhai H. W., Guo F., Huang N., Sun W. W., Bu C. H., Peng T., Yuan J. K., Zhao X. Z., Nanoscale, 2012, 4(21), 6863CrossRefPubMedGoogle Scholar
  44. [44]
    Tompkins H. G., J. Appl. Phys., 1991, 70(7), 3876CrossRefGoogle Scholar
  45. [45]
    Johnson P. B., Christy R. W., Phys. Rev. B, 1972, 6(12), 4370CrossRefGoogle Scholar
  46. [46]
    Zhang S. P., Bao K., Halas N. J., Xu H. X., Nordlander P., Nano Lett., 2011, 11(4), 1657CrossRefPubMedGoogle Scholar
  47. [47]
    Huang S. Y., Schlichthörl G., Nozik A. J., Grätzel M., Frank A. J., J. Phys. Chem. B, 1997, 101(4), 2576CrossRefGoogle Scholar
  48. [48]
    Bohren C. F., Huffmann D. R., Absorption and Scattering of Light by Small Particles, Wiley Interscience, New York, 1983, 247Google Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yuping Che
    • 1
  • Yang Wang
    • 2
  • Tingting You
    • 1
  • Huaiqiu Chang
    • 3
  • Penggang Yin
    • 1
  • Jin Zhai
    • 1
  1. 1.Key Laboratory of Bio-inspired Smart Interfacial Science and Technology, Ministry of Education, Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of ChemistryBeihang UniversityBeijingP. R. China
  2. 2.Institute of ChemistryChinese Academy of SciencesBeijingP. R. China
  3. 3.National Center for Nanoscience and TechnologyBeijingP. R. China

Personalised recommendations