Advertisement

Chemical Research in Chinese Universities

, Volume 34, Issue 4, pp 546–551 | Cite as

Removal of Chromium(VI) from Groundwater Using Oil Shale Ash Supported Nanoscaled Zero-valent Iron

  • Jian Cui
  • Ende Wang
  • Zhimin Hou
  • Rui Zhou
  • Xinqian Jiao
Article
  • 14 Downloads

Abstract

Oil shale ash(OSA) supported nanoscaled zero-valent iron(OSA-nZVI) was used as a rapid and efficient reductant for Cr(VI) reduction. The optimal mass ratio of nZVI to OSA and the optimal dosage were explored. The effects of initial pH, reaction temperature, initial Cr(VI) concentration, and common cations and anions in ground-water on Cr(VI) reduction were determined in batch experiments. The results show that the optimum initial pH is 5.0. The reaction temperature has a positive effect on Cr(VI) reduction while the real groundwater has a negative effect. Additionally, 84.22% Cr(VI) was still reduced by 3 g/L OSA-nZVI(1:2)(mass ratio of OSA to Fe0 was 1:2) within 120 min for 50 mg/L Cr(VI) under conditions of 10 ºC and unadjusted pH.

Keywords

Oil shale ash Nanoscaled zero-valent iron Chromium(VI) Groundwater 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Robles-Camacho J., Armienta M., Journal of Geochemical Explora-tion, 2000, 68, 167CrossRefGoogle Scholar
  2. [2]
    Oze C., Bird D. K., Fendorf S., Proceedings of the National Academy of Sciences, 2007, 104(16), 6544CrossRefGoogle Scholar
  3. [3]
    Loyaux-Lawniczak S., Lecomte P., Ehrhardt J. J., Environ. Sci. & Techn., 2001, 35(7), 1350CrossRefGoogle Scholar
  4. [4]
    Wilkin R. T., Su C., Ford R. G., Paul C. J., Environ. Sci. & Techn., 2005, 39(12), 4599CrossRefGoogle Scholar
  5. [5]
    Kumar A. R., Riyazuddin P., Environmental Monitoring and Assess-ment, 2010, 160(1―4), 579CrossRefGoogle Scholar
  6. [6]
    Li H., Wang Z., Yang Z., Chai L., Liao Y., Environ. Sci. & Techn., 2012, 29(6), 426Google Scholar
  7. [7]
    Costa M., Toxicology and Applied Pharmacology, 2003, 188(1), 1CrossRefGoogle Scholar
  8. [8]
    Ngomsik A. F., Bee A., Draye M., Cote G., Cabuil V., Comptes Ren-dus Chimie, 2005, 8(6), 963CrossRefGoogle Scholar
  9. [9]
    Zongo I., Leclerc J. P., Maïga H. A., Wéthé J., Lapicque F., Separa-tion and Purification Technology, 2009, 66(1), 159CrossRefGoogle Scholar
  10. [10]
    Al Hasin A., Gurman S. J., Murphy L. M., Perry A., Smith T. J., Gar-diner P. H., Environ. Sci. & Techn., 2009, 44(1), 400Google Scholar
  11. [11]
    Panda M., Bhowal A., Datta S., Environ. Sci. & Techn., 2011, 45(19), 8460CrossRefGoogle Scholar
  12. [12]
    Miretzky P., Cirelli A. F., J. Hazard. Mater., 2010, 180(1), 1CrossRefGoogle Scholar
  13. [13]
    Cao C. Y., Qu J., Yan W. S., Zhu J. F., Wu Z. Y., Song W. G., Lang-muir, 2012, 28(9), 4573CrossRefGoogle Scholar
  14. [14]
    Lv X., Xu J., Jiang G., Xu X., Chemosphere, 2011, 85(7), 1204CrossRefGoogle Scholar
  15. [15]
    Theron J., Walker J., Cloete T., Critical Reviews in Microbiology, 2008, 34(1), 43CrossRefGoogle Scholar
  16. [16]
    Li X. Q., Elliott D. W., Zhang W. X., Critical Reviews in Solid State and Materials Sciences, 2006, 31(4), 111CrossRefGoogle Scholar
  17. [17]
    Ponder S. M., Darab J. G., Mallouk T. E., Environ. Sci. & Techn., 2000, 34(12), 2564CrossRefGoogle Scholar
  18. [18]
    Petala E., Dimos K., Douvalis A., Bakas T., Tucek J., Zbořil R., Ka-rakassides M. A., J. Hazard. Mater., 2013, 261, 295CrossRefGoogle Scholar
  19. [19]
    Chen Z. X., Jin X. Y., Chen Z., Megharaj M., Naidu R., Journal of Colloid and Interface Science, 2011, 363(2), 601CrossRefGoogle Scholar
  20. [20]
    Chen Z. X., Cheng Y., Chen Z., Megharaj M., Naidu R., Journal of Nanoparticle Research, 2012, 14(8), 1CrossRefGoogle Scholar
  21. [21]
    Shi L. N., Lin Y. M., Zhang X., Chen Z. L., Chemical Engineering Journal, 2011, 171(2), 612CrossRefGoogle Scholar
  22. [22]
    Ponder S. M., Darab J. G., Bucher J., Caulder D., Craig I., Davis L., Edelstein N., Lukens W., Nitsche H., Rao L., Chem. Mater., 2001, 13(2), 479CrossRefGoogle Scholar
  23. [23]
    Kim H., Hong H. J., Lee Y. J., Shin H. J., Yang J. W., Desalination, 2008, 223(1), 212CrossRefGoogle Scholar
  24. [24]
    Fu F., Ma J., Xie L., Tang B., Han W., Lin S., J. Environ. Manage-ment, 2013, 128, 822CrossRefGoogle Scholar
  25. [25]
    Chen S. S., Hsu H. D., Li C. W., Journal of Nanoparticle Research, 2004, 6(6), 639CrossRefGoogle Scholar
  26. [26]
    Geng B., Jin Z., Li T., Qi X., Science of the Total Environment, 2009, 407(18), 4994CrossRefGoogle Scholar
  27. [27]
    Saad R., Thiboutot S., Ampleman G., Dashan W., Hawari J., Che-mosphere, 2010, 81(7), 853CrossRefGoogle Scholar
  28. [28]
    Zhang P., Tao X., Li Z., Bowman R. S., Environ. Sci. & Techn., 2002, 36(16), 3597CrossRefGoogle Scholar
  29. [29]
    Zheng T., Zhan J., He J., Day C., Lu Y., McPherson G. L., Piringer G., John V. T., Environ. Sci. & Techn., 2008, 42(12), 4494CrossRefGoogle Scholar
  30. [30]
    Al-Qodah Z., Shawaqfeh A., Lafi W., Desalination, 2007, 208(1), 294CrossRefGoogle Scholar
  31. [31]
    Al-Qodah Z., Water Research, 2000, 34(17), 4295CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jian Cui
    • 1
    • 3
  • Ende Wang
    • 1
  • Zhimin Hou
    • 2
  • Rui Zhou
    • 2
  • Xinqian Jiao
    • 2
  1. 1.School of Resources and Civil EngineeringNortheastern UniversityShenyangP. R. China
  2. 2.Key Laboratory of Groundwater Resources and Environment, Ministry of Education, College of Environment and ResourcesJilin UniversityChangchunP. R. China
  3. 3.Shenyang Geological Survey CenterChina Geological SurveyShenyangP. R. China

Personalised recommendations