Advertisement

Chemical Research in Chinese Universities

, Volume 34, Issue 6, pp 995–1003 | Cite as

Molecular Dynamics Simulations and Steered Molecular Dynamics Simulations of Glabridin Bound to Wild Type and V30A Mutant Transthyretin: Ligand-linked Perturbation of Tertiary Conformation

  • Zhengfei Yu
  • Jiarui Han
  • Ye Liu
  • Jingxuan Zhu
  • Xiaopian Tian
  • Weiwei HanEmail author
Article
  • 11 Downloads

Abstract

Transthyretin(TTR), as a tetrameric protein, functions as a neuroprotector. The native TTR homotetramer dissociates into dimers and monomers. Dimers and monomers self-assemble into amyloid fibrils, and this process can lead to some diseases. Native TTR homotetramer is a widely accepted model for TTR amyloid formation. In this study, simulations using molecular dynamics(MD) and steered MD(SMD) were performed to explore the mechanisms for glabridin(Glab), a specific inhibitor for TTR binding, for V30A mutant and wild-type(WT) TTR. MD simulation results indicate that, compared with Glab binding to WT and V30A mutant, the WT TTR could lead to the collapse of β-strands from Ser52 to His56 at chain A. This phenomenon facilitated the easy dissociation of chains A and C. Calculations of the binding free energy between the two chains showed that the V30A-Glab TTR complex displayed a lower binding energy than other systems(WT TTR and WT-Glab TTR). Then, SMD simulation was performed to ex-plore the unbinding pathway for Glab through the WT and V30A mutant TTR. The results show that Lys15(chain A) produced a hydrogen bond with Glab at the force peak via the WT TTR tunnel. Meanwhile, in the V30A TTR mutant, the hydrogen bond between Lys15(chain A) and Glab was broken at the force peak. This condition was beneficial for Glab to be taken off from the protein. Our theoretical results will be useful in designing a new specific inhibitor of TTR protein to control the TTR homotetramer dissociation.

Keywords

Transthyretin Glabridin Conformational change Molecular mechanics-poisson Boltzmann surface area(MM-PBSA) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Verona G., Mangione P. P., Raimondi S., Giorgetti S., Faravelli G., Porcari R., Corazza A., Gillmore J. D., Hawkins P. N., Pepys M. B., Taylor G. W., Bellotti V., Sci. Rep., 2017, 7(1), 182Google Scholar
  2. [2]
    Bulawa C. E., Connelly S., Devit M., Wang L., Weigel C., Fleming J. A., Packman J., Powers E. T., Wiseman R. L., Foss T. R., Wilson L. A., Kelly J. W., Labaudinière R., Proc. Natl. Acad. Sci. USA, 2012, 109(24), 9629Google Scholar
  3. [3]
    Green N. S., Palaninathan S. K., Sacchettini J. C., Kelly J. W., J. Am. Chem. Soc., 2003, 125(44), 13404Google Scholar
  4. [4]
    Cianci M., Folli C., Zonta P., Berni R., Zanotti G., Acta Crystallogr. D: Biol. Crystallogr., 2015, 71(18), 1582Google Scholar
  5. [5]
    Coelho T., Merlini G., Fleming J. A., Judge D. P., Kelly J. W., Mau-rer M. S., Planté-Bordeneuve V., Labaudinière V., Mundayat R., Riley S., Lombardo I., Huertas P., Neurol. Ther., 2016, 5(1), 1Google Scholar
  6. [6]
    Almeida M. R., Gales L., Damas A. M., Cardoso I., Saraiva M. J., Curr. Drug Targets CNS Neurol. Disord., 2005, 4(5), 587Google Scholar
  7. [7]
    Ciccone L., Nencetti S., Rossello A., Stura E. A., Orlandini E., J. Enzyme Inhib. Med. Chem., 2016, 31(Suppl.1), 40Google Scholar
  8. [8]
    Raya-Cruz M., Buades-Reines J., Gállego-Lezáun C., Ripoll-Vera T., Usón-Martín M., Cisneros-Barroso E., Med. Clin.(Barc.), 2017, 148(2), 63Google Scholar
  9. [9]
    Hammarström P., Jiang X., Hurshman A. R., Powers E. T., Kelly J. W., Proc. Natl. Acad. Sci. USA, 2002, 99(Suppl.4), 16427Google Scholar
  10. [10]
    Liu G., Ni W., Wang H., Li H., Zhang Y., Wang N., Wu Z., J. Peri-pher. Nerv. Syst., 2016, 22(1), 1911Google Scholar
  11. [11]
    Penchala S. C., Connelly S., Wang Y., Park M. S., Zhao L., Baranc-zak A., Rappley I., Vogel H., Liedtke M., Witteles R. M., Powers E. T., Reixach N., Chan W. K., Wilson I. A., Kelly J. W., Graef I. A., Alhamadsheh M. M., Proc. Natl. Acad. Sci. USA, 2013, 110(24), 9992Google Scholar
  12. [12]
    Coelho T., Maia L. F., Martins da Silva A., Waddington Cruz M., Planté-Bordeneuve V., Lozeron P., Suhr O. B., Campistol J. M., Conceição I. M., Schmidt H. H., Trigo P., Kelly J. W., Labaudinière R., Chan J., Packman J., Wilson A., Grogan D. R., Neurology, 2012, 79(8), 785Google Scholar
  13. [13]
    Blake C. C., Geisow M. J., Oatley S. J., Rérat B., Rérat C., J. Mol. Biol., 1978, 121(3), 339Google Scholar
  14. [14]
    Monaco H. L., Rizzi M., Coda A., Science, 1995, 268(5213), 1039Google Scholar
  15. [15]
    Foss T. R., Wiseman R. L., Kelly J. W., Biochemistry, 2005, 44(47), 15525Google Scholar
  16. [16]
    Adamski-Werner S. L., Palaninathan S. K., Sacchettini J. C., Kelly J. W., J. Med. Chem., 2004, 47(2), 355Google Scholar
  17. [17]
    Waddington Cruz M., Amass L., Keohane D., Schwartz J., Li H., Gundapaneni B., Amyloid, 2016, 23(3), 178Google Scholar
  18. [18]
    Kim B., Park H., Lee S. K., Park S. J., Koo T. S., Kang N. S., Hong K. B., Choi S., Eur. J. Med. Chem, 2016, 123, 777Google Scholar
  19. [19]
    Hendrix A. S., Spoonmore T. J., Wilde A. D., Putnam N. E., Hammer N. D., Snyder D. J., Guelcher S. A., Skaar E. P., Cassat J. E., Antimi-crob. Agents Chemother., 2016, 60(9), 5322Google Scholar
  20. [20]
    Galant N. J., Bugyei-Twum A., Rakhit R., Walsh P., Sharpe S., Arslan P. E., Westermark P., Higaki J. N., Torres R., Tapia J., Chakrabartty A., Sci. Rep., 2016, 6, 25080Google Scholar
  21. [21]
    You F., Li Q., Jin G., Zheng Y., Chen J., Yang H., BMC Neurosci., 2017, 18(1), 12Google Scholar
  22. [22]
    Zhang N., Qi Y., Zhang H. J., Wang X., Li H., Shi Y., Guo Y. D., Front Plant Sci., 2016, 7, 1804Google Scholar
  23. [23]
    Greene M. J., Klimtchuk E. S., Seldin D. C., Berk J. L., Connors L. H., Biochemistry, 2015, 54(2), 268Google Scholar
  24. [24]
    Trivella D. B., dos Reis C. V., Lima L. M., Foguel D., Polikarpov I., J. Struct. Biol., 2012, 180(1),143Google Scholar
  25. [25]
    Radovic B., Hussong R., Gerhäuser C., Meinl W., Frank N., Becker H., Köhrle J., Mol. Nutr. Food Res., 2010, 54(Suppl.2), 225Google Scholar
  26. [26]
    Simmler C., Pauli G. F., Chen S. N., Fitoterapia, 2013, 90, 160Google Scholar
  27. [27]
    Yokoyama T., Kosaka Y., Mizuguchi M., J. Med. Chem., 2014, 57(3), 1090Google Scholar
  28. [28]
    Seino H., Arai Y., Nagao N., Ozawa N., Hamada K., PloS One, 2016, 11(10), e0164061Google Scholar
  29. [29]
    Kaczmarczyk-Sedlak I., Klasik-Ciszewska S., Wojnar W., Pharmacol. Rep., 2016, 68(5), 1036Google Scholar
  30. [30]
    Wang W. P., Hul J., Sui H., Zhao Y. S., Feng J., Liu C., Pharmazie, 2016, 71(5), 252Google Scholar
  31. [31]
    Zhang F., Hu C., Dong Y., Lin M. S., Liu J., Jiang X., Ge Y., Guo Y., Arch. Biochem. Biophys., 2013, 535(2), 120Google Scholar
  32. [32]
    Zou L., Zhu J., Dong Y., Han W., Guo Y., Zhou H., RSC Adv., 2016, 6(99), 96816Google Scholar
  33. [33]
    Biasini M., Bienert S., Waterhouse A., Arnold K., Studer G., Schmidt T., Kiefer F., Gallo Cassarino T., Bertoni M., Bordoli L., Schwede T., Nucleic Acids Res., 2014, 42, 252Google Scholar
  34. [34]
    Abraham M. J., Gready J. E., J. Comput. Chem., 2011, 32(9), 2031Google Scholar
  35. [35]
    Lin Z., van Gunsteren W. F., J. Comput. Chem., 2013, 34(32), 2796Google Scholar
  36. [36]
    Kräutler V., van Gunsteren W. F., Hünenberger P. H., J. Comput. Chem., 2001, 22(5), 501Google Scholar
  37. [37]
    Laino T., Hutter J., J. Chem. Phys., 2008, 129(7), 074102Google Scholar
  38. [38]
    Jakobsen A. F., J. Chem. Phys., 2005, 122(12), 124901Google Scholar
  39. [39]
    David C. C., Jacobs D. J., Methods Mol. Biol., 2014, 1084, 193Google Scholar
  40. [40]
    Sittel F., Jain A., Stock G., J. Chem. Phys., 2014, 141(1), 014111Google Scholar
  41. [41]
    Amadei A., Linssen A. B. M., Berendsen H. J. C., Proteins, 1993, 17, 412Google Scholar
  42. [42]
    Phillips J.C., Braun R., Wang W., Gumbart J., Tajkhorshid E., Villa E., Chipot C., Skeel R. D., Kalé L., Schulten K., J. Comput. Chem., 2005, 26(16), 1781Google Scholar
  43. [43]
    Darve E., Rodríguez-Gómez D., Pohorille A., J. Chem. Phys., 2008, 128(14), 144120Google Scholar
  44. [44]
    Baker N. A., Sept D., Joseph S., Holst M. J., McCammon J. A., Nat. Acad. Sci. USA, 2001, 98(18), 10037Google Scholar
  45. [45]
    Kumari R., Kumar R., Lynn A., J. Chem. Inf. Model., 2014, 54(7), 1951Google Scholar
  46. [46]
    Wang J., Cieplak P., Kollman P. A., J. Comput. Chem., 2000, 21(19), 1049Google Scholar
  47. [47]
    Wang J., Wolf R. M., Caldwell J. W., Kollman P. A., Case D. A., J. Comput. Chem., 2004, 25(9), 1157Google Scholar
  48. [48]
    Kozlikova B., Sebestova E., Sustr V., Brezovsky J., Strnad O., Daniel L., Bednar D., Pavelka A., Manak M., Bezdeka M., Benes P., Kotry M., Gora A., Damborsky J., Sochor J., Bioinformatics, 2014, 30(18), 2684Google Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Zhengfei Yu
    • 1
  • Jiarui Han
    • 1
  • Ye Liu
    • 1
  • Jingxuan Zhu
    • 1
  • Xiaopian Tian
    • 1
  • Weiwei Han
    • 1
    Email author
  1. 1.Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life SciencesJilin UniversityChangchunP. R. China

Personalised recommendations