Chemical Research in Chinese Universities

, Volume 34, Issue 6, pp 1058–1062 | Cite as

Bio-template Synthesis of Spirulina/α-Fe2O3 Composite with Improved Surface Wettability

  • Qingling Meng
  • Chenchen Xie
  • Ran DingEmail author
  • Liang Cao
  • Ke Ma
  • Li Li
  • Zhankun Weng
  • Zuobin WangEmail author


Bio-template method has recently attracted much attention because of its prominent advantages in obtaining morphology controlled materials with structural specificity, complexity and their unique functions. The bio-template method combining with electrochemical deposition was employed to synthesize spirulina/hematite composite microstructures using native spirulina as template. A great amount of hematite(α-Fe2O3) nanoparticles can be formed and deposited onto the spirulina, resulting in a robust and pseudo-homogeneous surface. And the spirulina/α-Fe2O3 composite exhibits an improved surface wettability due to its helical morphology. This facile strategy may open new horizons in the field of replicating specific biological structures for functional materials in other potential applications.


α-Fe2O3 nanoparticle Spirulina platensis Bio-template synthesis Electrochemical deposition Hydro-phobic wettability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Alivisatos A. P., Science, 1996, 271, 933CrossRefGoogle Scholar
  2. [2]
    Ashoori R. C., Nature, 1996, 379, 413CrossRefGoogle Scholar
  3. [3]
    Laurent S., Forge D., Port M., Roch A., Robic C., Vander E. L., Muller R. N., Chem. Rev., 2008, 108, 2064CrossRefGoogle Scholar
  4. [4]
    Sun S., Murray C. B., Weller D., Folks L., Moser A., Science, 2000, 287, 1989CrossRefGoogle Scholar
  5. [5]
    Zhong L. S., Hu J. S., Liang H. P., Cao A., Song M., Wan W. G. L. J., Adv. Mater., 2006, 18, 2426CrossRefGoogle Scholar
  6. [6]
    Liu X., Chang Z., Luo L., Lei X., Liu J., Sun X., J. Mater. Chem., 2012, 22, 7232CrossRefGoogle Scholar
  7. [7]
    Reddy M. V., Yu T., Sow C. H., Shen Z. X., Lim C. T., Subba R. G. V., Chowdari B. V. R., Adv. Funct. Mater., 2007, 17, 2792CrossRefGoogle Scholar
  8. [8]
    Li Z., Lai X., Wang H., Mao D., Xing C., Wang D., Nanotechnology, 2009, 20, 245603CrossRefGoogle Scholar
  9. [9]
    Lai X., Li J., Korgel B. A., Dong Z., Li Z., Su F., Du J., Wang D., Angew. Chem., Int. Ed., 2011, 50, 2738CrossRefGoogle Scholar
  10. [10]
    Mao D., Yao J., Lai X., Yang M., Du J., Wang D., Small, 2011, 7, 578CrossRefGoogle Scholar
  11. [11]
    Nuli Y., Zhang P., Guo Z., Liu H. J., Electrochem. Soc., 2008, 155, A196CrossRefGoogle Scholar
  12. [12]
    Liu J., Li Y., Fan H., Zhu Z., Jiang J., Ding R., Hu Y., Huang X., Chem. Mater., 2009, 22, 212CrossRefGoogle Scholar
  13. [13]
    Chen J. S., Zhu T., Yang X. H., Yang H. G., Lou X. W., J. Am. Chem. Soc., 2010, 132, 13162CrossRefGoogle Scholar
  14. [14]
    Kim H. S., Piao Y., Kang S. H., Hyeon T., Sung Y. E., Electrochem. Commun., 2010, 12, 382CrossRefGoogle Scholar
  15. [15]
    Huang J., Lin L., Sun D., Chen H., Yang D., Li Q., Chem. Soc. Rev., 2015, 44, 6330CrossRefGoogle Scholar
  16. [16]
    Moradi M., Kim J. C., Qi J., Xu K., Li X., Ceder G., Belcher A. M., Green Chem., 2016, 18, 2619CrossRefGoogle Scholar
  17. [17]
    Liu Y., Song Y., Niu S., Zhang Y., Han Z., Ren L., RSC Adv., 2016, 6, 108974CrossRefGoogle Scholar
  18. [18]
    Chen L., Wang X., Chem. Commun., 2017, 53, 11988CrossRefGoogle Scholar
  19. [19]
    Tao X. Y., Du J., Li Y. P., Yang Y. C., Fan Z., Gan Y. P., Huang H., Zhang W. K., Dong L. X., Li X. D., Adv. Energy Mater., 2011, 1, 534CrossRefGoogle Scholar
  20. [20]
    Qiu Z., Huang H., Du J., Fen T., Zhang W. K., Gan Y. P., Tao X. Y., J. Phys. Chem. C, 2013, 117, 13770CrossRefGoogle Scholar
  21. [21]
    Tao X. Y., Li Y. P., Du J., Xia Y., Yang Y. C., Huang H., Gan Y. P., Zhang W. K., Li X. D., J. Mater. Chem., 2011, 21, 9095CrossRefGoogle Scholar
  22. [22]
    Xia Y., Zhang W. K., Xiao Z., Huang H., Zeng H. J., Chen X. R., Chen F., Gan Y. P., Tao X. Y., J. Mater. Chem., 2012, 22, 9209CrossRefGoogle Scholar
  23. [23]
    Tao X. Y., Dong L. X., Wang X. N., Zhang W. K., Nelson B. J., Li X. D., Adv. Mater., 2010, 22, 2055CrossRefGoogle Scholar
  24. [24]
    Xia Y., Zhang W. K., Huang H., Gan Y. P., Xiao Z., Qian L.C., Tao X. Y., J. Mater. Chem., 2011, 21, 6498CrossRefGoogle Scholar
  25. [25]
    Xia Y., Xiao Z., Dou X., Huang H., Lu X. H., Yan R. J., Gan Y. P., Zhu W. J., Tu J. P., Zhang W. K., Tao X. Y., ACS Nano, 2013, 7, 7083CrossRefGoogle Scholar
  26. [26]
    Tu Y. D., Zhou Z., Yan R. J., Gan Y. P., Huang W. Z., Weng X. X., Huang H., Zhang W. K., Tao X. Y., RSC Adv., 2012, 2, 10585CrossRefGoogle Scholar
  27. [27]
    Yan X., Zhou Q., Yu J., Xu T., Deng Y., Tang T., Feng Q., Bian L., Zhang Y., Ferreira A., Zhang L., Adv. Funct. Mater., 2015, 25, 5333CrossRefGoogle Scholar
  28. [28]
    Tao X., Wu R., Xia Y., Huang H., Chai W., Feng T., Gan Y., Zhang W., ACS Appl. Mater. Interfaces, 2014, 6, 3696CrossRefGoogle Scholar
  29. [29]
    Meng Q., Wang Z., Chai X., Weng Z., Ding R., Dong L., Appl. Surf. Sci., 2016, 368, 303CrossRefGoogle Scholar
  30. [30]
    Zeng Q., Bai J., Li J., Xia L., Huang K., Li X., Zhou B., J. Mater. Chem. A., 2015, 3, 4345CrossRefGoogle Scholar
  31. [31]
    Duret A., Gräzel M., J. Phys. Chem. B, 2005, 109, 17184CrossRefGoogle Scholar
  32. [32]
    Schrebler R., Bello K., Vera F., Gury P., Munoz E., Rio R. D., Meier H. G., Cordova R., Dalchiele E. A., Solid-State Lett., 2006, 9, C110CrossRefGoogle Scholar
  33. [33]
    Lu L., Li L., Wang X., Li G., J. Phys. Chem. B, 2005, 109, 17151CrossRefGoogle Scholar
  34. [34]
    Kleiman-Shwarsctein A., Huda M. N., Walsh A., Yan Y., Stucky G. D., Hu Y., Al-Jassim M. M., McFarland E. W., Chem. Mater., 2009, 22, 510CrossRefGoogle Scholar
  35. [35]
    Sahoo B. N., Kandaubramanian B., RSC Adv., 2014, 4, 22053CrossRefGoogle Scholar
  36. [36]
    Lv D., Shao H., Gao X., Lu H., Ma H., RSC Adv., 2016, 6, 93419CrossRefGoogle Scholar
  37. [37]
    Partheeban T., Sathish M., RSC Adv., 2016, 6, 78791CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.International Research Centre for Nano Handing and Manufacturing of China(CNM)Changchun University of Science and TechnologyChangchunP. R. China

Personalised recommendations