Advertisement

Chemical Research in Chinese Universities

, Volume 34, Issue 4, pp 604–608 | Cite as

Effects of Annealing Temperature on Microstructure and Electrochemical Properties of Perovskite-type Oxide LaFeO3 as Negative Electrode for Metal Hydride/Nickel(MH/Ni) Batteries

  • Shuqin Yang
  • Yuan Li
  • Yongjie Yuan
  • Zhentao Dong
  • Kailiang Ren
  • Yumeng Zhao
Article
  • 4 Downloads

Abstract

We reported the effects of annealing temperatures on microstructure and electrochemical properties of perovskite-type oxide LaFeO3 prepared by stearic acid combustion method. X-Ray diffraction(XRD) patterns show that the annealed LaFeO3 powder has orthorhombic structure. Scanning electron microscopy(SEM) and transmission electron microscopy(TEM) images show the presence of homogeneously dispersed, less aggregated, and small crystals(30―40 nm) at annealing temperatures of 500 and 600 °C. However, as the annealing temperature was increased to 700 and 800 °C, the crystals began to combine with each other and grew into further larger crystals(90―100 nm). The electrochemical performance of the annealed oxides was measured at 60 °C using chronopotentiometry, potentiodynamic polarization, and cyclic voltammetry. As the annealing temperature increased, the discharge capacity and anti-corrosion ability of the oxide electrode first increased and then decreased, reaching the optimum values at 600 °C, with a maximum discharge capacity of 563 mA·h/g. The better electrochemical performance of LaFeO3 annealed at 600 °C could be ascribed to their smaller and more homogeneous crystals.

Keywords

Metal hydride/nickel(MH/Ni) battery Negative electrode material Perovskite LaFeO3 Microstructure Electrochemical property 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Liu Y. F., Pan H. G., Gao M. X., Wang Q. D., J. Mater. Chem., 2011, 21, 4743CrossRefGoogle Scholar
  2. [2]
    Kaabi A., Tliha M., Dhahri A., Khaldi C., Lamloumi J., Ceram. Int., 2016, 42, 11682CrossRefGoogle Scholar
  3. [3]
    Yang S. Q., Han S. M., Li Y., Yang S. X., Hu L., Mater. Sci. Eng. B, 2011, 176(3), 231CrossRefGoogle Scholar
  4. [4]
    Zhou W. H., Zhu D., Tang Z. Y., Wu C. L., Huang L. W., Ma Z. W., Chen Y. G., J. Power Sources, 2017, 343, 11CrossRefGoogle Scholar
  5. [5]
    Semra T., Yang S., Ezgi O. S., Dag N., Tayfur O., Int. J. Hydrogen Energy, 2016, 41(23), 9948CrossRefGoogle Scholar
  6. [6]
    Zhang Q. G., Chen Z. L., Li Y. T., Fang F., Sun D.L., Ouyang L. Z., Zhu M., J. Phys. Chem. C, 2015, 119(9), 4719CrossRefGoogle Scholar
  7. [7]
    Yasuoka S., Ishida J., Kai T., Kajiwara T., Doi S., Yamazaki T., Kishida K., Inui H., Int. J. Hydrogen Energy, 2017, 42(12), 11574CrossRefGoogle Scholar
  8. [8]
    Iwase K., Terashita N., Mori K., Yokota H., Suzuki T., Inorg. Chem., 2013, 52(24), 14270CrossRefGoogle Scholar
  9. [9]
    Du P. C., Hu X. W., Yi C., Liu H. C., Liu P., Zhang H. L., Gong X., Adv. Funct. Mater., 2015, 25(16), 2420CrossRefGoogle Scholar
  10. [10]
    Khaerudini D. S., Guan G. Q., Zhang P., Xiaoketi P., Hao X. G., Wang Z. D., Kasai Y., Abudula A., J. Power Sources, 2016, 334, 137CrossRefGoogle Scholar
  11. [11]
    Esaka T., Sakaguchi H., Kobayashi S., Solid State Ionics, 2004, 166(3/4), 351CrossRefGoogle Scholar
  12. [12]
    Xia X., Li X. Q., Cui J. J., Liu H. T., Acta Chim. Sinica, 2004, 62(23), 2355Google Scholar
  13. [13]
    Lim D. K., Im H. N., Singh B., Park C. J., Song S. J., Electrochim. Acta, 2013, 102, 393CrossRefGoogle Scholar
  14. [14]
    Lim D. K., Im H. N., Kim J., Song S. J., J. Phys. Chem. Solids, 2013, 74(1), 115CrossRefGoogle Scholar
  15. [15]
    Wang Q., Deng G., Chen Y. Q., Chen Y. G., Cheng N. P., J. Appl. Phys., 2013, 113(5), 053305CrossRefGoogle Scholar
  16. [16]
    Wang Q., Chen Z. Q., Chen Y. G., Cheng N. P., Hui Q., Ind. Eng. Chem. Res., 2012, 51(37), 11821CrossRefGoogle Scholar
  17. [17]
    Deng G., Chen Y. G., Tao M. D., Wu C. L., Shen X. X., Yang H., Liu M., Electrochim. Acta, 2010, 55(3), 1120CrossRefGoogle Scholar
  18. [18]
    Song M., Chen Y. G., Tao M. D., Wu C. L., Zhu D., Yang H., Electrochim. Acta, 2010, 55(9), 3103CrossRefGoogle Scholar
  19. [19]
    Deng G., Chen Y. G., Tao M. D., Wu C. L., Shen X. X., Yang H., Liu M., Electrochim. Acta, 2010, 55(3), 884CrossRefGoogle Scholar
  20. [20]
    Deng G., Chen Y. G., Tao M. D., Wu C. L., Shen X. X., Yang H., Electrochim. Acta, 2009, 54(15), 3910CrossRefGoogle Scholar
  21. [21]
    Deng G., Chen Y. G., Tao M. D., Wu C. L., Shen X. X., Yang H., Liu M., Int. J. Hydrogen Energy, 2009, 34(13), 5568CrossRefGoogle Scholar
  22. [22]
    Song M., Chen Y. G., Tao M. D., Wu C. L., Zhu D., Yang H., J. Rare Metals, 2010, 28(4), 596Google Scholar
  23. [23]
    Kaabi A., Tliha M., Dhahri A., Khaldi C., Lamloumi J., Ceram. Int., 2016, 42(10), 11682CrossRefGoogle Scholar
  24. [24]
    Pei Y. R., Li Y., Che J. Y., Shen W. Z., Wang Y. C., Yang S. Q., Han S. M., Int. J. Hydrogen Energy, 2015, 40(28), 8742CrossRefGoogle Scholar
  25. [25]
    Pei Y. R., Du W. K., Li Y., Shen W. Z., Wang Y. C., Yang S. Q., Han S. M., Phys. Chem. Chem. Phys., 2015, 17(27), 18185CrossRefGoogle Scholar
  26. [26]
    Yuan Y. J., Dong Z. T., Li Y., Zhang L., Zhao Y. M., Wang B., Han S. M., Progress in Natural Science: Materials International, 2017, 27(1), 88CrossRefGoogle Scholar
  27. [27]
    Yang S. Q., Liu H. P., Han S. M., Li Y., Shen W. Z., Appl. Surf. Sci., 2013, 271, 210CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Shuqin Yang
    • 1
  • Yuan Li
    • 1
  • Yongjie Yuan
    • 1
  • Zhentao Dong
    • 1
  • Kailiang Ren
    • 1
  • Yumeng Zhao
    • 1
  1. 1.Department of Environmental and Chemical EngineeringYanshan UniversityQinhuangdaoP. R. China

Personalised recommendations