Advertisement

Chemical Research in Chinese Universities

, Volume 34, Issue 6, pp 882–886 | Cite as

One Step Hydrothermal Synthesis of Flower-shaped Co3O4 Nanorods on Nickel Foam as Supercapacitor Materials and Their Excellent Electrochemical Performance

  • Chen Wang
  • Yanshuang MengEmail author
  • Lei Wang
  • Fuliang Zhu
  • Yue ZhangEmail author
Article
  • 46 Downloads

Abstract

Flower-shaped Co3O4 nanorods directly grown on nickel foam(Co3O4/NF) were prepared by one step hydrothermal method at low temperature. Co3O4 nanorods are directly connected with the nickel foam, and no binder is needed as an additive, so the Co3O4/NF electrode has good electrical conductivity. This flower-shaped structure makes larger surface area of Co3O4 nanorods that exposes to the electrolyte, thus promoting the redox reaction. The Co3O4/NF electrode shows a high specific capacitance of 2005.34 F/g at the current density of 0.5 A/g and a high capacitance retention of 98.0% after 5000 cycles. The high superior capacitive performance with high specific capacitance and the excellent cyclic performance indicate that the one step hydrothermal method has great potential application in supercapacitors.

Keywords

Supercapacitor Co3O4/NF Hydrothermal Nanorod 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Miller J. R., Burke A. F., Electrochem. Soc. Interface, 2008, 17, 53Google Scholar
  2. [2]
    Wei T. Y., Chen C. H., Chen H. C., Lu S. Y., Hu C. C., Adv. Mater., 2010, 22, 347CrossRefGoogle Scholar
  3. [3]
    Simon P., Gogotsi Y., Nature Materials, 2008, 7, 845CrossRefGoogle Scholar
  4. [4]
    Beguin F., Presser V., Balducci A., Frackowiak E., Adv. Mater., 2014, 26, 2219CrossRefGoogle Scholar
  5. [5]
    Miller J. R., Simon P., Science Magazine, 2008, 321, 651Google Scholar
  6. [6]
    Wang G., Zhang L., Zhang J., Chem. Soc. Rev., 2012, 41, 797CrossRefGoogle Scholar
  7. [7]
    Lin Y., Wei T., Chien H., Lu S., Advanced Energy Materials, 2011, 1, 901CrossRefGoogle Scholar
  8. [8]
    Yuan C., Zhang X., Su L., Gao B., Shen L., J. Mater. Chem., 2009, 19, 5772CrossRefGoogle Scholar
  9. [9]
    Wang B., Zhu T., Wu H. B., Xu R., Chen J. S., Lou X. W., Nanoscale, 2012, 4, 2145CrossRefGoogle Scholar
  10. [10]
    Pan X., Chen X., Li Y., Yu Z., Electrochimica Acta, 2015, 182, 1101CrossRefGoogle Scholar
  11. [11]
    Zhou C., Zhang Y., Li Y., Liu J., Nano Lett., 2013, 13, 2078CrossRefGoogle Scholar
  12. [12]
    Xia X. H., Tu J. P., Wang X. L., Gu C. D., Zhao X. B., Chem. Commun.(Camb.), 2011, 47, 5786CrossRefGoogle Scholar
  13. [13]
    Yuan C., Yang L., Hou L., Shen L., Zhang F., Li D., Zhang X., J. Mater. Chem., 2011, 21, 18183CrossRefGoogle Scholar
  14. [14]
    Xia X., Tu J., Mai Y., Wang X., Gu C., Zhao X., J. Mater. Chem., 2011, 21, 9319CrossRefGoogle Scholar
  15. [15]
    Yuan C., Yang L., Hou L., Shen L., Zhang X., Lou X. W., Energy Environ. Sci., 2012, 5, 7883CrossRefGoogle Scholar
  16. [16]
    Xiong S., Yuan C., Zhang X., Xi B., Qian Y., Chemistry(Easton), 2009, 15, 5320Google Scholar
  17. [17]
    Yuan C., Hou L., Yang L., Li D., Shen L., Zhang F., Zhang X., J. Mater. Chem., 2011, 21, 16035CrossRefGoogle Scholar
  18. [18]
    Kim I., Kim J., Lee Y., Kim K., J. Electrochem. Soc., 2005, 152, A2170CrossRefGoogle Scholar
  19. [19]
    Liu J., Cao G., Yang Z., Wang D., Dubois D., Zhou X., Graff G. L., Pederson L. R., Zhang J. G., Chem. Sus. Chem., 2008, 1, 676CrossRefGoogle Scholar
  20. [20]
    Hu J., Zhong L., Song W., Wan L., Adv. Mater., 2008, 20, 2977CrossRefGoogle Scholar
  21. [21]
    Wu J. B., Lin Y., Xia X. H., Xu J. Y., Shi Q. Y., Electrochimica Acta, 2011, 56, 7163CrossRefGoogle Scholar
  22. [22]
    Qing X., Liu S., Huang K., Lv K., Yang Y., Lu Z., Fang D., Liang X., Electrochimica Acta, 2011, 56, 4985CrossRefGoogle Scholar
  23. [23]
    Gao Y., Chen S., Cao D., Wang G., Yin J., J. Power Sources, 2010, 195, 1757CrossRefGoogle Scholar
  24. [24]
    Feng C., Zhang J., Deng Y., Zhong C., Liu L., Hu W., Materials Science and Engineering B, 2015, 199, 15CrossRefGoogle Scholar
  25. [25]
    Duan B. R., Cao Q., Electrochimica Acta, 2012, 64, 154CrossRefGoogle Scholar
  26. [26]
    Lu Z., Chang Z., Zhu W., Sun X., Chem. Commun.(Camb.), 2011, 47, 9651CrossRefGoogle Scholar
  27. [27]
    Li Y., Cao D., Wang Y., Yang S., Zhang D., Ye K., Cheng K., Yin J., Wang G., Xu Y., J. Power Sources, 2015, 279, 138CrossRefGoogle Scholar
  28. [28]
    Yang J., Lian L., Ruan H., Xie F., Wei M., Electrochimica Acta, 2014, 136, 189CrossRefGoogle Scholar
  29. [29]
    Wang N., Yao M., Zhao P., Zhang Q., Hu W., J. Solid State Electrochem., 2016, 20, 1429CrossRefGoogle Scholar
  30. [30]
    Yin J., Zhang H., Luo J., Yao M., Hu W., Journal of Materials Science: Materials in Electronics, 2016, 28, 2093Google Scholar
  31. [31]
    Wang L., Ji H., Wang S., Kong L., Jiang X., Yang G., Nanoscale, 2013, 5, 3793CrossRefGoogle Scholar
  32. [32]
    Gu J., Fan X., Liu X., Li S., Wang Z., Tang S., Yuan D., Chem. Eng. J., 2017, 324, 35CrossRefGoogle Scholar
  33. [33]
    Deng J., Kang L., Bai G., Li Y., Li P., Liu X., Yang Y., Gao F., Liang W., Electrochimica Acta, 2014, 132, 127CrossRefGoogle Scholar
  34. [34]
    Deng M. J., Huang F. L., Sun I. W., Tsai W. T., Chang J. K., Nanotechnology, 2009, 20, 175602CrossRefGoogle Scholar
  35. [35]
    Lin C., Ritter J. A., Popov B. N., J. Electrochem. Soc., 1998, 145, 4097CrossRefGoogle Scholar
  36. [36]
    Srinivasan V., Weidner J. W., J. Electrochem. Soc., 1997, 144, L210CrossRefGoogle Scholar
  37. [37]
    Ke Q., Tang C., Yang Z., Zheng M., Mao L., Liu H., Wang J., Electrochimica Acta, 2015, 163, 9CrossRefGoogle Scholar
  38. [38]
    Qorbani M., Naseri N., Moshfegh A. Z., ACS Appl. Mater. Interfaces, 2015, 7, 11172CrossRefGoogle Scholar
  39. [39]
    Kong L., Lang J., Liu M., Luo Y., Kang L., J. Power Sources, 2009, 194, 1194CrossRefGoogle Scholar
  40. [40]
    Zhu Y., Cao C., Tao S., Chu W., Wu Z., Li Y., Sci. Rep., 2014, 4, 5787CrossRefGoogle Scholar
  41. [41]
    Du J., Zhou G., Zhang H., Cheng C., Ma J., Wei W., Chen L., Wang T., ACS Appl. Mater. Interfaces, 2013, 5, 7405CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringLanzhou University of TechnologyLanzhouP. R. China
  2. 2.Department of Mechanical and Industrial EngineeringTexas A&M University-KingsvilleKingsvilleUSA
  3. 3.State Key Laboratory of Advanced Processing and Recycling of Non-ferrous MetalsLanzhouP. R. China

Personalised recommendations