Chemical Research in Chinese Universities

, Volume 34, Issue 5, pp 751–757 | Cite as

Base-catalyzed Formation of Enamines from β,β-Dicyanostyrene Derivatives with N-Bromosaccharin

  • Nan Kang
  • Zhanguo ChenEmail author


A new method for the synthesis of functional enamines from β,β-dicyanostyrene derivatives and N-bromosaccharin(NBSA) was developed. In the presence of Na2CO3, the the reaction of β,β-dicyanostyrene derivatives with NBSA can generate the corresponding enamines smoothly in a mixed solvent of dichloromethane and N,N-dimethylformamide(DMF)(volume ratio 1:1) at 50 °C. The reaction of 14 kinds of β,β-dicyanostyrene derivatives with NBSA was investigated. Screened olefins afforded the corresponding enamines in good to excellent yields(up to 94%), indicating that the method has a wide adaptability for the substrate. The catalyst used is inexpensive and stable for storage. The amino groups of all products in their structures are on the α-position of products, revealing the reaction has an excellent regioselectivity. The possible pathway involving aminobromination of β,β-dicyanostyrene derivative with NBSA first and then elimination of HBr process in one pot has been proposed. The structures of all products were confirmed by 1H NMR, 13C NMR and HRMS analysis.


β,β-Dicyanostyrene derivative Functional enamine Sodium carbonate N-Bromosaccharin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2018_8055_MOESM1_ESM.pdf (1.4 mb)
Sodium carbonate-catalyzed the formation of enamines from β,β-dicyanostyrene derivatives with N-bromosaccharins


  1. [1]
    Kemp J. E., Eds.: Trost B. M., Fleming I., In Comprehensive Organic Synthesis, Vol. 7, Pergamon Press, Oxford, 1991, 469Google Scholar
  2. [2]
    Pearson W. H., Lian B. W., Bergmeier S. C., Eds.: Padwa A., In Comprehensive Heterocyclic Chemistry II, Vol. 1A, Pergamon Press, Oxford, 1996, 60Google Scholar
  3. [3]
    Bergmeier S. C., Stanchina D. M., J. Org. Chem., 1997 62(13), 4449CrossRefPubMedGoogle Scholar
  4. [4]
    Wang Y. N., Ni B., Headley A. D., Li G., Adv. Synth. Catal., 2007 349(3), 319CrossRefGoogle Scholar
  5. [5]
    Chen D. J., Guo L., Liu J. Y., Kirtane S., Cannon J. F., Li G. G., Org. Lett., 2005 7(5), 921CrossRefPubMedGoogle Scholar
  6. [6]
    Yeung Y. Y., Gao X. R., Corey E. J., J. Am. Chem. Soc., 2006 128(30), 9644CrossRefPubMedGoogle Scholar
  7. [7]
    Baer H. H., Rank W., Can. J. Chem., 1974 52(12), 2257CrossRefGoogle Scholar
  8. [8]
    Kharasch M. S., Priestley H. N., J. Am. Chem. Soc., 1939 61, 3425CrossRefGoogle Scholar
  9. [9]
    Thakur V. V., Talluri S. K., Sudalai A., Org. Lett., 2003 5(6), 861CrossRefPubMedGoogle Scholar
  10. [10]
    Minakata S., Yoneda Y., Oderaotoshi Y., Oderaotoshi Y., Komatsu M., Org. Lett., 2006 8(5), 967CrossRefPubMedGoogle Scholar
  11. [11]
    Kotti S. R. S. S., Xu X., Wang Y. N., Headley A. D., Li G., Tetrahe-dron Lett., 2004 45(39), 7209CrossRefGoogle Scholar
  12. [12]
    Qi X., Lee S. H., Kwon J. Y., Kim Y., Kim S. J., Lee Y. S., Yoon J., J. Org. Chem., 2003 68(23), 9140CrossRefPubMedGoogle Scholar
  13. [13]
    Wei H. X., Kim S. H., Li G., Tetrahedron, 2001 57(18), 3869CrossRefGoogle Scholar
  14. [14]
    Chen Z. G., Wei J. F., Wang M. Z., Zhou L. Y., Zhang C. J., Shi X. Y., Adv. Synth. Catal., 2009 351(14), 2358CrossRefGoogle Scholar
  15. [15]
    Chen Z. G., Wei J. F., Li R. T., Shi X. Y., Zhao P. F., J. Org. Chem., 2009 74(3), 1371CrossRefPubMedGoogle Scholar
  16. [16]
    Liu J. Y., Wang Y. I., Li G., Eur. J. Org. Chem., 2006 14, 3112CrossRefGoogle Scholar
  17. [17]
    Chen Z. G., Wang Y., Wei J. F., Zhao P. F., Shi X. Y., J. Org. Chem., 2010,75(6), 2085CrossRefPubMedGoogle Scholar
  18. [18]
    Zhi S. J., Sun H., Zhang G. Q., Li G., Pan Y., Org. Biomol. Chem., 2010 8(3), 628CrossRefPubMedGoogle Scholar
  19. [19]
    Han J. L., Zhi S. J., Wang L. Y., Pan Y., Li G. G., Eur. J. Org. Chem., 2007, (8),1332CrossRefGoogle Scholar
  20. [20]
    Karur S., Kotti S. R. S. S., Xu X., Cannon J. F., Headley A., Li G. G., J. Am. Chem. Soc., 2003 125(44), 13340CrossRefPubMedGoogle Scholar
  21. [21]
    Li G., Wei H. X., Kim S. H., Carducci M. D., Angew. Chem. Int. Ed., 2001 40(22), 4277CrossRefGoogle Scholar
  22. [22]
    Li G., Wei H. X., Kim S. H., Tetrahedron, 2001 57(40), 8407CrossRefGoogle Scholar
  23. [23]
    Hajra S., Bhowmick M., Sinha D., J. Org. Chem., 2006 71(24), 9237CrossRefPubMedGoogle Scholar
  24. [24]
    Minakata S., Yoneda Y., Oderaotoshi Y., Komatsu M., Org. Lett., 2006 8(5), 967CrossRefPubMedGoogle Scholar
  25. [25]
    Eank W., Bear H. H., Tetrahedron Lett., 1974, (15), 1459CrossRefGoogle Scholar
  26. [26]
    Wu X. L., Xia J. J., Wang G. W., Org. Biomol Chem., 2008 6(3), 548CrossRefPubMedGoogle Scholar
  27. [27]
    Song L., Luo S. Z., Cheng J. P., Org. Chem. Front., 2016 3(4), 447CrossRefGoogle Scholar
  28. [28]
    Chen Z. G., Wei J. F., Li W. L., Wang Y., Zhao P. F., Shi X.Y., Chin. J. Chem., 2011 29(8), 1689CrossRefGoogle Scholar
  29. [29]
    Wei J. F., Chen Z. G., Gao Y. N., Zhang P., Wang C. N., Zhao P. F., Wang Y., Shi X. Y., Chin. J. Chem., 2012 30(2), 391CrossRefGoogle Scholar
  30. [30]
    Chen Z. G., Zhao P. F., Wang Y., Eur. J. Org. Chem., 2011, (29), 5887CrossRefGoogle Scholar
  31. [31]
    Chen Z. G., Xia W., Wen H., Wang D., Li Y. N., Hu J. L., Chem. Res. Chinese Universities, 2013 29(4), 699CrossRefGoogle Scholar
  32. [32]
    Chen Z. G., Li Y. N., Zhou J. M., Wang D., Ge M., Chem. Res. Chinese Universities, 2014 30(2), 266CrossRefGoogle Scholar
  33. [33]
    Chen Z. G., Liu Y. L., Hu J. L., Liu D.E., Chem. Res. Chinese Universities, 2015 31(1), 65CrossRefGoogle Scholar
  34. [34]
    Zajc B., Synth. Commun., 1999 29(10), 1779CrossRefGoogle Scholar
  35. [35]
    De Souza S. P. L., De Silva J. F. M., De Mattos M. C. S., Synth. Commun., 2003 33(6), 935CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi’anP. R. China

Personalised recommendations