Advertisement

Chemical Research in Chinese Universities

, Volume 34, Issue 6, pp 934–938 | Cite as

Screen, Design and Enzymatic Activity Determination of Artificial Microperoxidases

  • Jia Xu
  • Xiaoming Zhao
  • Ye Yuan
  • Yanhui Song
  • Jiaqi Wang
  • Chonghan Wang
  • Yujia Chen
  • Jianing Wang
  • Zhijun Yan
  • Shuwen Guan
  • Liping Wang
Article
  • 13 Downloads

Abstract

Peroxidase activity greatly impacts the maintenance of free radical homeostasis, and can prevent or treat diseases related to free radicals. Microperoxidase-11(MP-11) is created via hydrolysis of cytochrome c iron-porphyrin complexes. In these complexes, the heme iron is penta-coordinate with histidine and exhibits excellent antioxidant activity when decomposing hydrogen peroxide. In this study, we screened the Ph.D.-7 and Ph.D.-12 phage display peptide libraries and obtained ten small peptide ligands of deuterohemin(the vinyl groups of oxidized heme). Among these polypeptides, DhHP-7P1, 12P1, 12P2 and 12P6 have good enzymatic activity compared with MP-11, and exhibit activities up to 50% of MP-11. Based on the screened sequences, we designed a series of artificial microperoxidases and determined that a higher peroxidase activity could be achieved with an enzymatic active site containing a second site of histidine residue spaced between two arginine residues with an interval of two amino acids(Dh-XHRXXR).

Keywords

Microperoxidase-11 Deuterohemin Artificial microperoxidase Enzymatic activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2018_8053_MOESM1_ESM.pdf (596 kb)
Supplementary material, approximately 595 KB.

References

  1. [1]
    Wang H. P., Qian S. Y., Schafer F. Q., Domann F. E., Oberley L. W., Buettner G. R., Free Radical Biology & Medicine, 2001, 30(8), 825Google Scholar
  2. [2]
    Raes M., Michiels C., Remacle J., Free Radical Biology & Medicine, 1987, 3(1), 3Google Scholar
  3. [3]
    Dianzani M. U., Boll. Soc. Ital. Biol. Sper., 1992, 68(8/9), 491Google Scholar
  4. [4]
    Nakano Y., Asada K., Plant & Cell Physiology, 1981, 22(5), 867Google Scholar
  5. [5]
    Badyal S. K., Eaton G., Mistry S., Pipirou Z., Basran J., Metcalfe C. L., Gumiero A., Handa S., Moody P. C., Raven E. L., Biochemistry, 2009, 48(22), 4738Google Scholar
  6. [6]
    Raven E. L., Heme Peroxidases, Springer, Berlin, Heidelberg, 2013, 962Google Scholar
  7. [7]
    Wang X., Tachikawa H., Yi X., Manoj K. M., Hager L. P., Journal of Biological Chemistry, 2003, 278(10), 7765Google Scholar
  8. [8]
    Welinder K. G., Curr. Opi. Struct. Biol., 1992, 2(3), 388Google Scholar
  9. [9]
    Ryabova E. S., Dikiy A., Hesslein A. E., Bjerrum M. J., Ciurli S., Nordlander E., Journal of Biological Inorganic Chemistry, 2004, 9(4), 385Google Scholar
  10. [10]
    Franzen S., Boxer S. G., Dyer R. B., Woodruff W. H., Journal of Physical Chemistry B, 2000, 104(44), 10359Google Scholar
  11. [11]
    Traylor T. G., Lee W. A., Stynes D. V., Oxidases & Related Redox Systems, 1984, 40(3), 553Google Scholar
  12. [12]
    Quilez R., De L. S., Desfosses B., Mansuy D., Mahy J. P., Febs. Letters, 1996, 395(1), 73Google Scholar
  13. [13]
    Bertini I., Turano P., Vila A. J., Journal of Clinical Microbiology, 1993, 47(4), 1225Google Scholar
  14. [14]
    Huystee R. B. V., Structure, 1996, 4(3), 311Google Scholar
  15. [15]
    Gajhede M., Schuller D. J., Henriksen A., Smith A. T., Poulos T. L., Nature Structural Biology, 1997, 4(12), 1032Google Scholar
  16. [16]
    Wirstam M., Siegbahn P. E. M., Journal of the American Chemical Society, 2000, 122(35), 8539Google Scholar
  17. [17]
    Asada K., Physiologia Plantarum, 2010, 85(2), 235Google Scholar
  18. [18]
    Shigeoka S., Ishikawa T., Tamoi M., Miyagawa Y., Takeda T., Yabuta Y., Journal of Experimental Botany, 2002, 53(372), 1305Google Scholar
  19. [19]
    Davletova S., Rizshsky L., Liang H., Zhong S., Oliver D. J., Coutu J., Shulaev V., Schlauch K., Mittler R., The Plant Cell, 2005, 17(1), 268Google Scholar
  20. [20]
    Tsou C. L., Biochemical Journal, 1951, 49(49), 512Google Scholar
  21. [21]
    Aron J., Baldwin D. A., Marques H. M., Pratt J. M., Adams P. A., Journal of Inorganic Biochemistry, 1986, 27(4), 227Google Scholar
  22. [22]
    Baldwin D. A., Marques H. M., Pratt J. M., Journal of Inorganic Biochemistry, 1987, 30(3), 203Google Scholar
  23. [23]
    Galende P. P., Cuadrado N. H., Kostetsky E. Y., Roig M. G., Villar E., Shnyrov V. L., Kennedy J. F., International Journal of Biological Macromolecules, 2015, 81, 1005Google Scholar
  24. [24]
    Deyhimi F., Nami F., International Journal of Chemical Kinetics, 2012, 44(10), 699Google Scholar
  25. [25]
    Laszlo J. A., Compton D. L., Journal of Molecular Catalysis B: Enzymatic, 2002, 18(1), 109Google Scholar
  26. [26]
    Reszka K. J., O’Malley Y., McCormick M. L., Denning G. M., Briti-gan B. E., Free Radical Biology & Medicine, 2004, 36(11), 1448Google Scholar
  27. [27]
    Geysen H. M., Rodda S. J., Mason T. J., Molecular Immunology, 1986, 23(7), 709Google Scholar
  28. [28]
    Pande J., Szewczyk M. M., Grover A. K., Biotechnology Advances, 2010, 28(6), 849Google Scholar
  29. [29]
    Liu Y. L., Guo L., Roeske R., Luo G. M., Li W., Acta Scientiarium Naturalium Universitatis Jilinensis, 2001, 1(1), 91Google Scholar
  30. [30]
    Zeng Y., Liu L., He J., Liu Y., Zhu C., You X., Wu Y., Canadian Journal of Microbiology, 2012, 58(7), 898Google Scholar
  31. [31]
    Yang W. J., Lai J. F., Peng K. C., Chiang H. J., Weng C. N., Shiuan D., Journal of Immunological Methods, 2005, 304(1), 15Google Scholar
  32. [32]
    Miyake C., Michihata F., Asada K., Plant & Cell Physiology, 1991, 32(1), 33Google Scholar
  33. [33]
    Vuleta A., Jovanovic S. M., Tucic B., Plant Physiology & Biochemistry, 2016, 100, 166Google Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jia Xu
    • 1
  • Xiaoming Zhao
    • 2
  • Ye Yuan
    • 1
  • Yanhui Song
    • 1
  • Jiaqi Wang
    • 1
  • Chonghan Wang
    • 1
  • Yujia Chen
    • 1
  • Jianing Wang
    • 1
  • Zhijun Yan
    • 1
  • Shuwen Guan
    • 1
  • Liping Wang
    • 1
  1. 1.School of Life SciencesJilin UniversityChangchunP. R. China
  2. 2.Scientific Research CenterChina-Japan Union Hospital of Jilin UniversityChangchunP. R. China

Personalised recommendations