Advertisement

Chemical Research in Chinese Universities

, Volume 34, Issue 6, pp 1004–1008 | Cite as

One-step Synthesis of N-Doped Mesoporous Carbon as Highly Efficient Support of Pd Catalyst for Hydrodechlorination of 2,4-Dichlorophenol

  • Haodong TangEmail author
  • Meng Xiang
  • Bin Xu
  • Ying Li
  • Wenfeng Han
  • Zongjian LiuEmail author
Article
  • 28 Downloads

Abstract

Although the hard template method is often employed to prepare N-doped mesoporous carbon(N-MC), the removal of the silica template commonly involves the use of highly toxic HF or repeated treatment with NaOH solution. Herein, we report a polyvinylidene fluoride-assisted one-step method for synthesis of N-MC, namely the silica-free N-MC can be prepared via temperature-programmed thermal treatment of a slurry obtained by dispersing nano-silica into a solution containing sucrose, urea, oxalic acid, polyvinylidene fluoride and dimethylacetamide. The resulting N-MC, which owns 3.47%(mass fraction) nitrogen and a surface area of 929 m2/g, is a highly suitable support of Pd catalyst used in hydrodechlorination of 2,4-dichlorophenol, with its performance being much better than those of MC and activated carbon. The excellent catalytic hydrodechlorination activity of the Pd/N-MC catalyst can be attributed to its strong metal-support interaction which results in a good Pd dispersion and high resistance to the growth of nanosized Pd under reaction conditions.

Keywords

2,4-Dichlorophenol Hydrodechlorination N-Doped mesoporous carbon Polyvinylidene fluoride Pd catalyst 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Andreozzi R., Di S. I., Marotta R., Pinto G., Pollio A., Spasiano D., Water Res., 2011, 45, 2038CrossRefGoogle Scholar
  2. [2]
    Qu Y. M., Yan H., Wang S. L., Chen T., Wang G. Y., Chem. Res. Chinese Universities, 2017, 33(5), 804CrossRefGoogle Scholar
  3. [3]
    Witońska I. A., Walock M. J., Binczarski M., Lesiak M., Stani-shevsky A. V., Karski S., J. Mol. Catal. A, 2014, 393, 248CrossRefGoogle Scholar
  4. [4]
    Zhou J., Wu K., Wang W. J., Han Y. X., Xu Z. Y., Wan H. Q., Zheng S. R., Zhu D. Q., Appl. Catal. B, 2015, 162, 85CrossRefGoogle Scholar
  5. [5]
    Zhao Y. S., Zhou H. J., Chem. Res. Chinese Universities, 2017, 33(3), 415CrossRefGoogle Scholar
  6. [6]
    Zhang L. N., Cai K., Zhang F., Yue Q. F., Chem. Res. Chinese Uni-versities, 2015, 31(1), 130CrossRefGoogle Scholar
  7. [7]
    Shao Y., Xu Z. Y., Wan H. Q., Wan W. Q., Chen H., Zheng S. R., Catal. Commun., 2011, 12, 1405CrossRefGoogle Scholar
  8. [8]
    Dong Z. P., Dong C. X., Liu Y. S., Le X. D., Jin Z. C., Ma J. T., Chem. Eng., J., 2015, 270, 215CrossRefGoogle Scholar
  9. [9]
    Cui X. L., Zuo W., Tian M., Dong Z. P., Ma J. P., J. Mol. Catal. A, 2016, 423, 386CrossRefGoogle Scholar
  10. [10]
    Zhou J., Wu K., Wang W. J., Xu Z. Y., Wan H. Q., Zheng S. R., Appl. Catal., A, 2014, 470, 336CrossRefGoogle Scholar
  11. [11]
    Li R. R., Zhao J., Han D. M., Li X. N., Catal. Commun., 2017, 97, 116CrossRefGoogle Scholar
  12. [12]
    Jiang H. Z., Yu X. L., Nie R. F., Lu X. H., Zhou D., Xia Q. H., Appl. Catal. A, 2016, 520, 73CrossRefGoogle Scholar
  13. [13]
    Wang J., Liu H. Y., Gu X. M., Wang H. H., Su D. S., Chem. Commun., 2014, 50, 9182CrossRefGoogle Scholar
  14. [14]
    Ferrero G. A., Fuertes A. B., Sevilla M., Titirici M. M., Carbon, 2016, 106, 179CrossRefGoogle Scholar
  15. [15]
    Jun S., Joo S. H., Ryoo R., Kruk M., Jaroniec M., Liu Z., Ohsuna T., Terasaki O., J. Am. Chem. Soc., 2000, 122, 10712CrossRefGoogle Scholar
  16. [16]
    Yang Y., Lan G., Wang X., Li Y., China J. Catal., 2016, 37, 1242CrossRefGoogle Scholar
  17. [17]
    Singh D. K., Krishna K. S., Harish S., Sampath S., Eswaramoorthy M., Angew. Chem. Int. Ed., 2016, 55, 2032CrossRefGoogle Scholar
  18. [18]
    Chen M., Shao L. L., Liu Y. P., Ren T. Z., Yuan Z. Y., J. Power Sources, 2015, 283, 305CrossRefGoogle Scholar
  19. [19]
    Li L., Meng Q., Ji W., Shao J., Xu Q., Yan J., Mol. Catal., 2017, 442, 147CrossRefGoogle Scholar
  20. [20]
    Liang J., Zheng Y., Chen J., Liu J., Hulicova-Jurcakova D., Jaroniec M., Qiao S. Z., Angew. Chem. Int. Ed., 2012, 51, 3892CrossRefGoogle Scholar
  21. [21]
    Nagpure A. S., Gurrala L., Gogoi P., Chilukuri S. V., RSC Adv., 2016, 6, 44333CrossRefGoogle Scholar
  22. [22]
    Zheng X., Xiao Q., Zhang Y., Zhang X., Zhong Y., Zhu W., Catal. Today, 2011, 175, 615CrossRefGoogle Scholar
  23. [23]
    Xia C. H., Liu Y., Xu J., Yu J. B., Qin W., Liang X. M., Catal. Commun., 2009, 10, 456CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Industrial Catalysis, College of Chemical EngineeringZhejiang University of TechnologyHangzhouP. R. China

Personalised recommendations