Chemical Research in Chinese Universities

, Volume 34, Issue 6, pp 1009–1013 | Cite as

Synthesis, Structure Characteristic and Thermal Behavior of Two New Metal-organic Azo-triazole Compounds: [Zn(phen)3] ZTO 6H2O and [Cu(phen)3] ZTO 6H2O

  • Zimei Ding
  • Wenli Cao
  • Hui Zheng
  • Jie HuangEmail author
  • Kangzhen Xu
  • Jirong Song


[Zn(phen)3] ZTO 6H2O(1) and [Cu(phen)3] ZTO 6H2O(2) were synthesized by the reaction of Zn(NO3)2 6H2O/Cu(NO3)2 3H2O with 4,4-azo-1H-1,2,4-triazol-5-one(ZTO) and 1,10-phenanthroline(phen). The two compounds were characterized by elemental analysis and IR spectrum analysis, respectively. Compound 1 was also characterized by single crystal X-ray diffraction analysis. For compound 1, the coordination geometry around the Zn2+ is a distorted octahedron, with the bite angles of 76.7(3)°―77.6(4)° for all three phen ligands. Moreover, the thermal behaviors and thermal decomposition kinetics were studied and analyzed. Besides, thermal stability and safety parameters(TSADT, Tb) are 164.7 and 166.4 °C for compound 1, and 149.6 and 150.8 °C for compound 2, respectively.


Azo-triazole [Zn(phen)3] ZTO 6H2[Cu(phen)3] ZTO 6H2Crystal structure Thermal behavior 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2018_8051_MOESM1_ESM.pdf (118 kb)
Synthesis, Structure characteristic and Thermal behavior of two new metal-organic azo-triazole compounds: [Zn(phen)3] ZTO 6H2O and [Cu(phen)3] ZTO 6H2O


  1. [1]
    Yang Q., Lu J. Y., Inorg. Chem. Commun., 2017, 84, 33CrossRefGoogle Scholar
  2. [2]
    Zhang W. H., Liu Q., Rrn Y. H., Yang B., Zhang X. B., Zhang C., Ma H. X., Zhao F. Q., Hu R. Z., Chem. Res. Chinese Universities, 2018, 34(2), 254CrossRefGoogle Scholar
  3. [3]
    Myers T. W., Bjorgaard J. A., Brown K. E., Chavez D. E., Hanson S. K., Scharff R. J., Tretiak S., Veautheir J. M., J. Am. Chem. Soc., 2016, 138, 4685CrossRefGoogle Scholar
  4. [4]
    Nair U. R., Asthana S. N., Rao A. S., Gandhe B. R., Def. Sci. J., 2010, 60, 137CrossRefGoogle Scholar
  5. [5]
    Göbel M., Klapötke T. M., Adv. Funct. Mater., 2009, 19, 347CrossRefGoogle Scholar
  6. [6]
    Wang Q. Y., Wang S., Feng X., Wu L., Zhang S. H., Ding N., Tong W. C., Zhou M. R., Wang B., Yang L., RSC Adv., 2017, 7, 48161CrossRefGoogle Scholar
  7. [7]
    Tian J. W., Xiong H. L., Lin Q. H., Cheng G. B., Yang H. W., New J. Chem., 2017, 41, 1918CrossRefGoogle Scholar
  8. [8]
    Deblitz R., Hrib C. G., Plenikowski G., Edelmann F. T., Inorg. Chem. Commun., 2012, 18, 57CrossRefGoogle Scholar
  9. [9]
    Zhai L. J., Fan X. Z., Wang B. Z., Huo H., Li Y. N., Bi F. Q., Zhang J. L., Chinese J. Energ. Mater., 2016, 24, 862Google Scholar
  10. [10]
    Ciezak-Jenkins J. A., Jenkins T. A., J. Mol. Struct., 2017, 1129, 313CrossRefGoogle Scholar
  11. [11]
    Wang Y. L., Zhao F. Q., Ji Y. P., Yi J. H., Wang W., Xu S. Y., An T., Pei Q., Chem. Res. Chinese Univerities, 2014, 30(3), 468CrossRefGoogle Scholar
  12. [12]
    Wang S. W., Wu B. D., Yang L., Zhang T. L., Zhou Z. N., Zhang J. G., Chem. Res. Chinese Universities, 2012, 28(4), 585Google Scholar
  13. [13]
    Shao Y., Zhu W., Xiao H. M., J. Mol. Graphics Modell., 2013, 40, 54CrossRefGoogle Scholar
  14. [14]
    Guo J. J., Huang J., Song J. R., Miao K. H., Cao W. L., Chem. Res. Chinese Universities, 2016, 32(5), 812CrossRefGoogle Scholar
  15. [15]
    Dippod A. A., Klpötke T. M., J. Am. Chem. Soc., 2013, 135, 9931CrossRefGoogle Scholar
  16. [16]
    Klapötke T. M., Witkowski T. G., Propellants Explos. Pyrotech., 2016, 41, 470CrossRefGoogle Scholar
  17. [17]
    Thottempudi V., Gao H., Shreeve J. M., J. Am. Chem. Soc., 2011, 133, 6464CrossRefGoogle Scholar
  18. [18]
    Thottempudi V., Shreeve J. M., J. Am. Chem. Soc., 2011, 133, 19982CrossRefGoogle Scholar
  19. [19]
    Naud D. L., Hiskey M. A., Harry H. H., J. Energ. Mater., 2003, 21, 57CrossRefGoogle Scholar
  20. [20]
    Li X. H., Zhang R. Z., Zhang X. Z., Struct. Chem., 2011, 22, 577CrossRefGoogle Scholar
  21. [21]
    Li S. H., Shi H. G., Sun C. H., Li X. T., Pang S. P., Yu Y. Z., Zhao X. Q., J. Chem. Crystallogr., 2009, 39, 13CrossRefGoogle Scholar
  22. [22]
    Ma C., Huang J., Ma H. X., Xu K. Z., Lv X. Q., Song J. R., Zhao N. N., He J. Y., Zhao Y. S., J. Mol. Struct., 2013, 1036, 521CrossRefGoogle Scholar
  23. [23]
    Zhu J. P., Jin S. H., Wan L., Zhang C. Y., Li L. J., Chen S. S., Shu Q. H., Dalton Trans., 2016, 45, 3590CrossRefGoogle Scholar
  24. [24]
    Zhang T. L., Zhang J. G., Zhang Z. G., Yu K. B., Acta Chim. Sinica, 2000, 58, 533Google Scholar
  25. [25]
    Zhong Y. T., Huang J., Song J. R., Chinese J. Chem., 2011, 29, 1672CrossRefGoogle Scholar
  26. [26]
    Guo J. J., Cao W. L., Li S. L., Miao K. H., Song J. R., Huang J., Acta Cryst. C, 2016, 72, 166CrossRefGoogle Scholar
  27. [27]
    Luo Y. S., Zeng X. H., Wang W. M., Chen J. L, He L. H., Zhang M. L., Liu S. J., Wen H. R., Chem. Res. Chinese Universities, 2018, 34(1), 1CrossRefGoogle Scholar
  28. [28]
    Raad A. T., Boghaei D. M., Khavasi H. R., J. Coord. Chem., 2010, 63, 273CrossRefGoogle Scholar
  29. [29]
    Baran E. J., Wagner C. C., Rossi M., Caruso F., Z. Anorg. Allgem. Chem., 2000, 626, 701CrossRefGoogle Scholar
  30. [30]
    Guney E., Yilmaz V. T., Kazak C., Polyhedron, 2010, 29, 1285CrossRefGoogle Scholar
  31. [31]
    Williams P. A. M., Ferrer E. G., Pasquevich K. A., Baran E. J., Castellano E. E., J. Chem. Cryst., 2000, 30, 539CrossRefGoogle Scholar
  32. [32]
    Wu B. D., Zhou Z. N., Li F. G., Yang L., Zhang T. L., Zhang J. G., New J. Chem., 2013, 37, 646CrossRefGoogle Scholar
  33. [33]
    Li Y. J., Zhang T. L., Zhang J. G., Zhang Y. C., J. Hazard. Mater., 2009, 164, 962CrossRefGoogle Scholar
  34. [34]
    Sheldrick G. M., SHELXL-97, Program for X-Ray Crystal Structure Refinement, University of Göttingen, Göttingen, 1997Google Scholar
  35. [35]
    Guo W. Y., Peng Z. H., Li D. C., Zhou Y. H., Polyhedron, 2004, 23, 1701CrossRefGoogle Scholar
  36. [36]
    Kostakis G. E., Nordlander E., Tsipis A. C., Haukka M., Plakatouras J. C., Inorg. Chem. Commun., 2011, 14, 87CrossRefGoogle Scholar
  37. [37]
    Safin D. A., Babashkina M. G., Bolte M., Krivolapov D. B., Verizhnikov M. L., Bashirov A. R., Klein A., Inorg. Chim. Acta, 2011, 366, 19CrossRefGoogle Scholar
  38. [38]
    Ma C., Huang J., Zhong Y. T., Xu K. Z., Song J. R., Zhang Z., Bull. Korean. Chem. Soc., 2013, 34, 2086CrossRefGoogle Scholar
  39. [39]
    Kissinger H. E., Anal. Chem., 1957, 29, 1702CrossRefGoogle Scholar
  40. [40]
    Ozawa T., Bull. Chem. Soc. Jpn., 1965, 38, 1881CrossRefGoogle Scholar
  41. [41]
    Hu R. Z., Yang A. Q., Ling Y. J., Thermochim. Acta, 1988, 123, 135CrossRefGoogle Scholar
  42. [42]
    Hu R. Z., Gao S. L., Zhao F. Q., Shi Q. Z., Zhang T. L., Zhang J. J., Thermal Analysis Kinetics(2nd), Beijing Science Press, Beijing, 2008Google Scholar
  43. [43]
    Zhang T. L., Hu R. Z., Xie Y., Thermochim. Acta, 1994, 244, 17Google Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Zimei Ding
    • 1
  • Wenli Cao
    • 1
  • Hui Zheng
    • 1
  • Jie Huang
    • 1
    Email author
  • Kangzhen Xu
    • 1
  • Jirong Song
    • 1
    • 2
  1. 1.Department of Chemical EngineeringNorthwest UniversityXi’anP. R. China
  2. 2.Conservation Technology Departmentthe Palace MuseumBeijingP. R. China

Personalised recommendations