Chemical Research in Chinese Universities

, Volume 34, Issue 5, pp 719–722 | Cite as

Highly Efficient Synthesis of Au130(SPh-Br)50 Nanocluster

  • Xiuqing Ren
  • Xuemei Fu
  • Xinzhang Lin
  • Chao Liu
  • Jiahui Huang
  • Jinghui Yan


We reported the synthesis of Au130(SPh-Br)50(Br-Ph-SH=4-bromothiophenol) nanocluster with high purity and high yield via “size focusing” and “ligand exchange” processes. The time of synthetic process was significantly reduced compared with previous synthetic routine. Au130(SPh-Br)50 was determined by UV-Vis absorption spectros-copy and matrix-assisted laser desorption ionization(MALDI) mass spectroscopy. Thermo-gravimetric analysis (TGA) and size-exclusion chromatogram(SEC) analyses confirmed the purity of Au130(SPh-Br)50. The yield of gold nanoc-lusters was 20%(based on HAuCl4).


Au130 Gold nanocluster Thiolate ligand 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Kurashige W., Niihori Y., Sharma S., Negishi Y., Coordin. Chem. Rev., 2016, 320, 238CrossRefGoogle Scholar
  2. [2]
    Knoppe S., Burgi T., Acc. Chem. Res., 2014, 47, 1318CrossRefGoogle Scholar
  3. [3]
    Maity P., Xie S H., Yamauchi M., Tsukuda T., Nanoscale, 2012, 4, 4027CrossRefGoogle Scholar
  4. [4]
    Tsukuda T., Bull. Chem. Soc. Jpn., 2012, 85, 151CrossRefGoogle Scholar
  5. [5]
    Jin R., Zeng C., Zhou M., Chen Y., Chem. Rev., 2016, 116, 10346CrossRefGoogle Scholar
  6. [6]
    Daniel M., Astruc D., Chem. Rev., 2004, 104, 293CrossRefGoogle Scholar
  7. [7]
    Yuan X., Luo Z., Yu Y., Yao Q., Xie J., Chem-Asian J., 2013, 8, 858CrossRefGoogle Scholar
  8. [8]
    Kang X., Wang S., Song Y., Jin S., Sun G., Yu H., Zhu M., Angew. Chem. Int. Ed., 2016, 55, 3611CrossRefGoogle Scholar
  9. [9]
    Yao Q., Yuan X., Yu Y., Yu Y., Xie J., Lee J., J. Am. Chem. Soc., 2015, 137, 2128CrossRefGoogle Scholar
  10. [10]
    Kumar S., Jin R., Nanoscale, 2012, 4, 4222CrossRefGoogle Scholar
  11. [11]
    Russier-Antoine I., Bertorelle F., Vojkovic M., Rayane D., Salmon E., Jonin C., Dugourd P., Antoine R., Brevet P., Nanoscale, 2014, 6, 13572CrossRefGoogle Scholar
  12. [12]
    Zhu M., Aikens C., Hendrich M., Gupta R., Qian H., Schatz G., Jin R., J. Am. Chem. Soc., 2009, 131, 2490CrossRefGoogle Scholar
  13. [13]
    Wallace W., Wyrwas R., Whetten R., Mitric R., Bonacic-Koutecky V., J. Am. Chem. Soc., 2003, 125, 8408CrossRefGoogle Scholar
  14. [14]
    Negishi Y., Mizuno M., Hirayama M., Omatoi M., Takayama T., Iwase A., Kudo A., Nanoscale, 2013, 5, 7188CrossRefGoogle Scholar
  15. [15]
    Li G., Abroshan H., Liu C., Zhuo S., Li Z., Xie Y., Kim H. J., Rosi N. L., Jin R., ACS Nano, 2016, 10, 7998CrossRefGoogle Scholar
  16. [16]
    Chen H., Liu C., Wang M., Zhang C., Li G., Wang F., Chin. J. Catal., 2016, 37, 1787CrossRefGoogle Scholar
  17. [17]
    Yoon B., Hakkinen H., Landman U., Worz A. S., Antonietti J. M., Abbet S., Judai K., Heiz U., Science, 2005, 307, 403CrossRefGoogle Scholar
  18. [18]
    Schmid G., Chem. Soc. Rev., 2008, 37, 1909CrossRefGoogle Scholar
  19. [19]
    Alvarez M., Chen J., Plascencia-Villa G., Black D., Griffith W., Garzon I., Jose-Yacaman M., Demeler B., Whetten R., J. Phys. Chem. B, 2016, 120, 6430CrossRefGoogle Scholar
  20. [20]
    Luo Z., Zheng K., Xie J., Chem. Commum., 2014, 50, 5143CrossRefGoogle Scholar
  21. [21]
    Yang X., Yang M., Pang B., Vara M., Xia Y., Chem. Rev., 2015, 115, 10410CrossRefGoogle Scholar
  22. [22]
    Zheng K., Setyawati M., Leong D., Xie J., ACS Nano, 2017, 11, 6904CrossRefGoogle Scholar
  23. [23]
    Goswami N., Luo Z., Yuan X., Leong D., Xie J., Mater. Horiz., 2017, 4, 817CrossRefGoogle Scholar
  24. [24]
    Jin R., Qian H., Wu Z., Zhu Y., Zhu M., Mohanty A., Garg N., J. Phys. Chem. Lett., 2010, 1, 2903CrossRefGoogle Scholar
  25. [25]
    Akola J., Walter M., Whetten R. L., Hakkinen H., Gronbeck H., J. Am. Chem. Soc., 2008, 130, 3756CrossRefGoogle Scholar
  26. [26]
    Heaven M., Dass A., White P., Holt K., Murray R. J. Am. Chem. Soc., 2008, 130, 3754CrossRefGoogle Scholar
  27. [27]
    Qian H., Eckenhoff W. T., Zhu Y., Pintauer T., Jin R., J. Am. Chem. Soc., 2010, 132, 8280CrossRefGoogle Scholar
  28. [28]
    Liu C., Li T., Li G., Nobusada K., Zeng C., Pang G., Rosi N L., Jin R., Angewa. Chem. Int. Ed., 2015, 54, 9826CrossRefGoogle Scholar
  29. [29]
    Chen Y., Zeng C., Liu C., Kirschbaum K., Gayathri C., Gil R., Rosi N., Jin R., J. Am. Chem. Soc., 2015, 137, 10076CrossRefGoogle Scholar
  30. [30]
    Negishi Y., Sakamoto C., Ohyama T., Tsukuda T., J. Phys. Chem. Lett., 2012, 3, 1624CrossRefGoogle Scholar
  31. [31]
    Dass A., Theivendran S., Nimmala P., Kumara C., Jupally V., Fortu-nelli A., Sementa L., Barcaro G., Zuo X., Noll B., J. Am. Chem. Soc., 2015, 137, 4610CrossRefGoogle Scholar
  32. [32]
    Zeng C., Chen Y., Das A., Jin R., J. Phys. Chem. Lett., 2015, 6, 2976CrossRefGoogle Scholar
  33. [33]
    Zeng C., Liu C., Pei Y., Jin R., ACS Nano, 2013, 7, 6138CrossRefGoogle Scholar
  34. [34]
    Black D., Bhattarai N., Whetten R., Bach S., J. Phys. Chem. A, 2014, 118, 10679CrossRefGoogle Scholar
  35. [35]
    Chakraborty I., Pradeep T., Chem. Rev., 2017, 117, 8208CrossRefGoogle Scholar
  36. [36]
    Liu C., Lin J., Shi Y., Li G., Nanoscale, 2015, 7, 5987CrossRefGoogle Scholar
  37. [37]
    Tang Z., Robinson D. A., Bokossa N., Xu B., Wang S., Wang G., J. Am. Chem. Soc., 2011, 133, 16037CrossRefGoogle Scholar
  38. [38]
    Jupally V., Dass A., Phys. Chem. Chem. Phys., 2014, 16, 10473CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemistry & Environmental EngineeringChangchun University of Science and TechnologyChangchunP. R. China
  2. 2.Gold Catalysis Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianP. R. China
  3. 3.University of Chinese Academy of SciencesBeijingP. R. China

Personalised recommendations