Advertisement

Theoretical Study on the Kinetics for the Reactions of Heptyl Radicals with Methanol

  • Zhongrui Zhao
  • Jinou Song
  • Boyang Su
  • Xiaowen Wang
Article

Abstract

Ab initio study of the reactions of n-heptyl radicals(1-C7H15, 2-C7H15, 3-C7H15, and 4-C7H15) with methanol was conducted over the temperature range of 300–1500 K. Transition states for the reaction channels producing C7H15OH, CH3, C7H15OCH3, H, C7H16, CH2OH and CH3O were identified and the geometries of all stationary points were calculated at BB1K/MG3S level of theory. The potential barrier heights of the corresponding transition states were predicted by the CBS-QB3//BB1K and G4//BB1K methods, indicating that the eight H-abstraction channels are more kinetically favorable than the channels where OH transfers from CH3OH to C7H15 and where the C7H15OCH3+H products are given. The rate constants of H-abstraction channels were calculated with TST and TST/Eck. Both the forward and reverse rate constants have positive temperature dependence and the tunneling effect is only important at the temperature lower than 700 K. For the reactions of H-atom abstraction from methyl in CH3OH by n-heptyl, a reverse and the corresponding forward rate constant are roughly equal. For the reactions of H-atom abstraction from OH in CH3OH by n-heptyl, a reverse rate constant is larger by several orders of magnitude than the corresponding forward one.

Keywords

n-Heptane Methanol Ab initio Calculation Conventional transition state theory Tunneling effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2018_8026_MOESM1_ESM.pdf (590 kb)
Theoretical Study on the Kinetics for the Reactions of Heptyl Radicals with Methanol

References

  1. [1]
    Sadeghinezhad E., Kazi S. N., Sadeghinejad F., Badarudin A., Me-hrali M., Sadri R., Safaei M. R., Renew. Sust. Energ. Rev., 2014 30(30), 29CrossRefGoogle Scholar
  2. [2]
    Balki M. K., Sayin C., Canakci M., Fuel, 2014 115(4), 901CrossRefGoogle Scholar
  3. [3]
    Hsieh W. D., Chen R. H., Wu T. L., Lin T. H., Atmos. Environ., 2002 36(3), 403CrossRefGoogle Scholar
  4. [4]
    Agarwal A. K., Karare H., Dhar A., Fuel. Process. Technol., 2014 121(5), 16CrossRefGoogle Scholar
  5. [5]
    Tran L. S., Glaude P. A., Fournet R., Battin-Leclerc F., Energy Fuels, 2013 27(4), 2226CrossRefGoogle Scholar
  6. [6]
    Lee P. F., Matsui H., Xu D. W., Wang N. S., J. Phys. Chem. A, 2013 117(3), 525CrossRefGoogle Scholar
  7. [7]
    Held T. J., Dryer F. L., Int. J. Chem. Kinet., 1998 30(11), 805CrossRefGoogle Scholar
  8. [8]
    Curran H. J., Gaffuri P., Pitz W. J., Westbrook C. K., Combus. Flame, 1998, 114(1/2), 149CrossRefGoogle Scholar
  9. [9]
    Zheng Z. L., Yao M. F., Fuel, 2006, 85(17/18), 2605CrossRefGoogle Scholar
  10. [10]
    Chen C. X., Song, J. O., Song C. L., Lv G., Int. J. Chem. Kinet., 2015 47(12), 764CrossRefGoogle Scholar
  11. [11]
    Alecu I. M., Truhlar D. G., J. Phys. Chem. A, 2011 115(51), 14599CrossRefGoogle Scholar
  12. [12]
    Shi J., Ran J. Y., Qin C. L., Qi W. J., Zhang L., Comput. Theor. Chem., 2015 1074, 73CrossRefGoogle Scholar
  13. [13]
    Park J., Xu Z. F., Xu K., Lin M. C., P. Combust. Inst., 2013 34(1), 473CrossRefGoogle Scholar
  14. [14]
    Zhao Y., Lynch B. J., Truhlar D. G., J. Phys. Chem. A, 2004 108(14), 2715CrossRefGoogle Scholar
  15. [15]
    Lynch B. J., Zhao Y., Truhlar D. G., J. Phys. Chem. A, 2003 107(9), 1384CrossRefGoogle Scholar
  16. [16]
    Becke A. D., J. Chem. Phys., 1992 96(3), 2155CrossRefGoogle Scholar
  17. [17]
    Becke A. D., J. Chem. Phys., 1992 97(12), 9173CrossRefGoogle Scholar
  18. [18]
    Becke A. D., J. Chem. Phys., 1993 98(7), 5648CrossRefGoogle Scholar
  19. [19]
    Katsikadakos D., Hardalupas Y., Taylor A. M., Hunt P. A., Phys. Chem. Chem. Phys., 2012 14(27), 9615CrossRefGoogle Scholar
  20. [20]
    Chen C. X., Song J. O., Song C. L., Lv G., Li Z. J., Mol. Phys., 2015 114(2), 315CrossRefGoogle Scholar
  21. [21]
    Chen C. X., Song J. O., Song C. L., Lv G., Li Z. J., Comput. Theor. Chem., 2016 1075(2), 63CrossRefGoogle Scholar
  22. [22]
    Ma P., Song J. O., Song C. L., Lv G., Chen C. X., Yang C. W., Chem. J. Chinese Universities, 2015 36(1), 149Google Scholar
  23. [23]
    Coote M. L., J. Phys. Chem. A, 2004 108(17), 3865CrossRefGoogle Scholar
  24. [24]
    Alecu I. M., Zheng J. J., Zhao Y., Truhlar D. G., J. Chem. Theory Comput., 2010 6(9), 2872CrossRefGoogle Scholar
  25. [25]
    Fukui K., J. Phys. Chem., 1970 74(23), 4161CrossRefGoogle Scholar
  26. [26]
    Curtiss L. A., Redfen P. C., Raghavachari K., J. Chem. Phys., 2007 126(8), 084108CrossRefGoogle Scholar
  27. [27]
    Montgomery Jr. J. A., Frisch M. J., Ochterski J. W., Petersson G. A., J. Chem. Phys., 1999 110(6), 2822CrossRefGoogle Scholar
  28. [28]
    Purvis III G. D., Bartlett R. J., J. Chem. Phys., 1982 76(4), 1910CrossRefGoogle Scholar
  29. [29]
    Pople J. A., Head-Gordon M., Raghavachari K., J. Chem. Phys., 1987 87(10), 5968CrossRefGoogle Scholar
  30. [30]
    Kendall R. A., Dunning Jr T. H., Harrison R. J., J. Chem. Phys., 1992 96(9), 6796CrossRefGoogle Scholar
  31. [31]
    Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Peters-son G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmay-lov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery Jr. J. A., Peralta J. E., Ogliaro F., Bearpark M. J., Heyd J., Brothers E. N., Kudin K. N., Staroverov V. N., Kobayashi R., Normand J., Raghavachari K., Ren-dell A. P., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam N. J., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas O., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J., Gaussian 09, Gaussian, Inc., Wallingford, CT,2009 Google Scholar
  32. [32]
    Eyring H., Chem. Rev., 1935 17(1), 65CrossRefGoogle Scholar
  33. [33]
    Barker J. R., Nguyen T. L., Stanton J. F., Aieta C., Ceotto M., Gabas F., Kumar T. J. D., Li C. G. L., Lohr L. L., Maranzana A., Ortiz N. F., Preses J. M., Simmie J. M., Sonk J. A., Stimac P. J., MultiWell-2017 Software Suite, Ann Arbor, Michigan, 2017 Google Scholar
  34. [34]
    Eckart C., Phys. Rev., 1930 35(11), 1303CrossRefGoogle Scholar
  35. [35]
    Ayala P. Y., Schlegel H. B., J. Chem. Phys., 1998 108(6), 2314CrossRefGoogle Scholar
  36. [36]
    NIST Computational Chemistry Comparison and Benchmark Data-base. Release 18(October 2016). https://doi.org/cccbdb.nist.gov/
  37. [37]
    Lynch B. J., Truhlar D. G., J. Phys. Chem. A, 2001 105(105), 2936CrossRefGoogle Scholar
  38. [38]
    Hammond G.S., J. Am. Chem. Soc., 1955 77(2), 334CrossRefGoogle Scholar
  39. [39]
    Lee T. J., Taylor P. R., Int. J. Quantum Chem., 1989, 36(23 S), 199CrossRefGoogle Scholar
  40. [40]
    Orlov M. Y., Chernova E. M., Turovtsev V. V., Orlov Y. D., Russ. Chem. Bull., 2014 63(12), 2620CrossRefGoogle Scholar
  41. [41]
    Liu J. Y., Li Z. S., Wu J. Y., Wei Z. G., Zhang G., Sun C. C., J. Chem. Phys., 2003 119(14), 7214CrossRefGoogle Scholar
  42. [42]
    Canneaux S., Bohr F., Henon E., J. Comput. Chem., 2014 35(1), 82CrossRefGoogle Scholar
  43. [43]
    Jodkowski J. T., Rayez M. T., Rayez J. C., Berces T., Dobe S., J. Phys. Chem. A, 1999 103(19), 3750CrossRefGoogle Scholar
  44. [44]
    Menrad H., Nierhauve B., SAE Technical Paper, 1983, 831686CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Zhongrui Zhao
    • 1
  • Jinou Song
    • 1
  • Boyang Su
    • 1
  • Xiaowen Wang
    • 1
  1. 1.State Key Laboratory of EnginesTianjin UniversityTianjinP. R. China

Personalised recommendations