Advertisement

Chemical Research in Chinese Universities

, Volume 34, Issue 5, pp 844–848 | Cite as

Hydrophilization of Polyurethane Foam Carriers in MBBR with Hyperbranched Polymeric Diazonium Salts

  • Shang Li
  • Jilei Wang
  • Xinlin Tuo
  • Yaning He
Article

Abstract

In recent years, there has been a considerable research interest in moving-bed biofilm reactor(MBBR) for its efficiency and stability. This work proposes a new way to modify the hydrophilicity of polyurethane foam(PU) carriers via the layer-by-layer self-assembly of hyperbranched polymeric diazonium salt(M-HB-DAS) and poly(sodium-p-styrenesulfonate)(PSS). Modified carriers showed very good adsorption for microbes according to the results of scanning electron microscope(SEM). Biochemical experiments on wastewater treatment confirm that the modified PU carriers can improve the removal rate of chemical oxygen demand(COD).

Keywords

Hyperbranched Diazonium salt Layer-by-layer self-assembly Hydrophilization Azo polymer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Rusten B., Hem L. J., Odegaard H., Water Environ. Res., 1995 67(1), 75CrossRefGoogle Scholar
  2. [2]
    Rusten B., Mattsson E., Broch-Due A., Westrum T., Water Sci. & Technol., 1994 30(3), 161CrossRefGoogle Scholar
  3. [3]
    Rusten B., Hem L. J., Odegaard H., Water Res., 1994 28(6), 1425CrossRefGoogle Scholar
  4. [4]
    Chen S., Sun D., Chung J. S., Waste Manage., 2008 28(2), 339CrossRefGoogle Scholar
  5. [5]
    Igarashi T., Watanabe Y., Asano T., Tambo N., Water Environmental Engineering and Reuse of Water, Hokkaido Press, Sapporo, 1999, 250Google Scholar
  6. [6]
    Odegaard H., Water Sci. & Technol., 2006 53(9), 17CrossRefGoogle Scholar
  7. [7]
    McQuarrie J. P., Boltz J. P., Water Environ. Res., 2011 83(6), 560CrossRefGoogle Scholar
  8. [8]
    Rusten B., Kolkinn O., Odegaard H., Water Sci. & Technol., 1997 35(6), 71CrossRefGoogle Scholar
  9. [9]
    Pastorelli G., Canziani R., Pedrazzi L., Rozzi A., Water Sci. & Technol., 1999, 40(4/5), 169CrossRefGoogle Scholar
  10. [10]
    Bassin J., Kleerebezem R., Rosado A., van Loosdrecht M. M., Dezotti M., Environ. Sci. Technol., 2012 46(3), 1546CrossRefGoogle Scholar
  11. [11]
    Luostarinen S., Luste S., Valentin L., Rintala J., Water Res., 2006 40(8), 1607CrossRefGoogle Scholar
  12. [12]
    Calderón K., Martín-Pascual J., Poyatos J. M., Rodelas B., González-Martínez A., González-López J., Bioresource Technol., 2012 121(7), 119CrossRefGoogle Scholar
  13. [13]
    Canziani R., Emondi V., Garavaglia M., Malpei F., Pasinetti E., Buttiglieri G., J. Membr. Sci., 2006, 286(1/2), 202CrossRefGoogle Scholar
  14. [14]
    Rusten B., Eikebrokk B., Ulgenes Y., Lygren E., Aquacult. Eng., 2006 34(3), 322CrossRefGoogle Scholar
  15. [15]
    Odegaard H., Rusten B., Westrum T., Water Sci. & Technol., 1994 29, 157CrossRefGoogle Scholar
  16. [16]
    Andreottola G., Foladori P., Ragazzi M., Tatano F., Water Sci. & Technol., 2000 41, 375CrossRefGoogle Scholar
  17. [17]
    Tawfik A., Badr N., Taleb E., EISenousy W., Desalin.& Water Treat., 2012, 37(1—3), 350CrossRefGoogle Scholar
  18. [18]
    Feng Q., Wang T., Zheng H., Chu L., Zhang C., Chen H., Kong X., Xing X. H., Bioresource Technol., 2012 117(10), 201CrossRefGoogle Scholar
  19. [19]
    Chu L., Wang J., Chemosphere, 2011 83(1), 63CrossRefGoogle Scholar
  20. [20]
    Guo W., Ngo H. H., Dharmawan F., Palmer C. G., Bioresource Technol., 2010 101(5), 1435CrossRefGoogle Scholar
  21. [21]
    de Ory I., Romero L. E., Cantero D., Process Biochem., 2004 39(5), 547CrossRefGoogle Scholar
  22. [22]
    Xing X. H., Jun B. H., Yanagida M., Tanji Y., Unno H., Biochem. Eng. J., 2000 5(1), 29CrossRefGoogle Scholar
  23. [23]
    Nakajima-Kambe T., Shigeno-Akutsu Y., Nomura N., Onuma F., Nakahara T., Appl. Microbio. Biotechnol., 1999 51(2), 134CrossRefGoogle Scholar
  24. [24]
    Robaina N. F., Soriano S., Cassella R. J., J. Hazard. Mater., 2009, 167(1—3), 653CrossRefGoogle Scholar
  25. [25]
    Decher G., Science, 1997 277(5330), 1232CrossRefGoogle Scholar
  26. [26]
    Decher G., Hong J. D., Schmitt J., Thin Solid Films, 1992, 210/211(2), 831CrossRefGoogle Scholar
  27. [27]
    Lutkenhaus J. L., Hammond P. T., Cheminform, 2007 40(7), 804Google Scholar
  28. [28]
    Kim B. S., Park S. W., Hammond P. T., ACS Nano, 2008 2(2), 386CrossRefGoogle Scholar
  29. [29]
    Ariga K., Lvov Y. M., Kawakami K., Ji Q., Hill J. P., Adv. Drug Delivery Rev., 2011 63(9), 762CrossRefGoogle Scholar
  30. [30]
    de Villiers M. M., Otto D. P., Strydom S. J., Adv. Drug Delivery Rev., 2011 63(9), 701CrossRefGoogle Scholar
  31. [31]
    Cai K., Rechtenbach A., Hao J., Bossert J., Jandt K. D., Biomaterials, 2005 26(30), 5960CrossRefGoogle Scholar
  32. [32]
    Zhang X., Chen H., Zhang H., Chem. Commun., 2007 14(14), 1395CrossRefGoogle Scholar
  33. [33]
    Ji F. Q., Zhang Y. W., Geng Y. L., Zong Y. X., Wang L., Chem. Res. Chinese Universities, 2016 32(3), 493CrossRefGoogle Scholar
  34. [34]
    Duan Y., An Q., Zhang Q., Zhang Y. H., Chem. Res. Chinese Uni-versities, 2015 31(4), 674CrossRefGoogle Scholar
  35. [35]
    Zhou X. H., Wang H. S., Chem. J. Chinese Universities, 2017 38(6), 1076Google Scholar
  36. [36]
    Deng W., Guo H. C., Li G. A., Kan C. Y., Chin. Chem. Lett., 2017 28(2), 367CrossRefGoogle Scholar
  37. [37]
    Yang H., Li T., Tong W. J., Gao C. Y., Chem. J. Chinese Universities, 2017 39(1), 172Google Scholar
  38. [38]
    Zhou Y., Bruening M. L., Bergbreiter D. E., Crooks R. M., Wells M., J. Am. Chem. Soc., 1996 118(15), 3773CrossRefGoogle Scholar
  39. [39]
    Wang J. L., Wang S. H., Zhou Y. Q., Wang X. G., He Y. N., ACS Appl. Mater. Interfaces., 2015 7(30), 16889CrossRefGoogle Scholar
  40. [40]
    Wei R. B., Wang X. G., He Y. N., Eur. Polym. J., 2015 69, 584CrossRefGoogle Scholar
  41. [41]
    Wang J. L., Li S., Wu B., He Y. N., Eur. Polym. J., 2016 84, 236CrossRefGoogle Scholar
  42. [42]
    Wang J. L., Wu B., Li S., Sinawang G., Wang X. G., He Y. N., ACS Sustain. Chem. Eng., 2016 4(7), 4036CrossRefGoogle Scholar
  43. [43]
    Li S., Wang J. L., Shen J. J., Wu B., He Y. N., ACS Macro Lett., 2018 7, 437CrossRefGoogle Scholar
  44. [44]
    Wang J. L., Li S., Liang R. Q., Wu B., He Y. N. Chin. Chem. Lett., 2018 29(1), 143CrossRefGoogle Scholar
  45. [45]
    Zheng M. Y., Wei Y. S., Geng W. Chem. J. Chinese Universities, 2015 36(5), 899Google Scholar
  46. [46]
    Che P. C., He Y. N., Zhang Y., Wang X. G., Chem. Lett., 2004 33(1), 22CrossRefGoogle Scholar
  47. [47]
    Che P. C., He Y. N., Wang X. G., Macromolecules, 2005 38(21), 8657CrossRefGoogle Scholar
  48. [48]
    Li X. Y., Wang X. L., Ye G., Xia W. J., Wang X. G., Polymer, 2010 51(4), 860CrossRefGoogle Scholar
  49. [49]
    Li X. Y., Fan P. W., Tuo X. L., He Y. N., Wang X. G., Thin Solid Films, 2009 517(6), 2055CrossRefGoogle Scholar
  50. [50]
    Wilsenach J., van Loosdrecht M. I., Water Sci. & Technol., 2003 48(1), 103CrossRefGoogle Scholar
  51. [51]
    Wenzel R. N., J. Phys. Chem., 1949 53, 1466CrossRefGoogle Scholar
  52. [52]
    Cassie A., Baxter S., Trans. Faraday S., 1944, 40, 546CrossRefGoogle Scholar
  53. [53]
    Basibuyuk M., Forster C., Process Biochem., 2003 38(9), 1311CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Advanced Materials, Ministry of Education, Department of Chemical EngineeringTsinghua UniversityBeijingP. R. China

Personalised recommendations