Advertisement

Chemical Research in Chinese Universities

, Volume 34, Issue 6, pp 1020–1027 | Cite as

Efficient Removal of Lead from Washing Effluent of Lead-contaminated Soil with Garlic Peel

  • Xing Chen
  • Lipu Yin
  • Hongyu Zhou
  • Junyou Liu
  • Xiaohui Li
  • Xianbin Ai
  • Kai Huang
Article
  • 15 Downloads

Abstract

Wastewater produced from the soil washing process contains heavy metals, which limits its reuse for washing. So it is necessary to develop an efficient and economical way to recycle it, and this study presents a biosorption method to realize this goal. A typical soil sample contaminated by lead was taken from the real field near a lead smelting factory, used for the toxic metals extraction with dilute citric acid. A leach liquor was obtained with lead ions at the level of 12.35 mg/L, Cd 1.2 mg/L, Cu 1.5 mg/L, Zn 2.6 mg/L, as well as the coexisting anions such as sulphate, silicate, chloride at the concentration of sveral hundred miligram per liter. The garlic peel was modified by a simple chemical saponification process and used as the biosorbent for toxic metal removal. Firstly, the adsorption behavior of lead ions on the saponified garlic peel was systematically investigated using the synthetic solutions, and then the adsorption mechanisms were explored by detailed experiments combining with the thermodynamic calculation reuslts of the aqueous system of Pb(II)-citrate-H2O. It was found that in artificial solution containing 0.01 mol/L citrate, the maximum adsorption capacity of 261.0 mg/g was reached at pH near 3.0, and also at this very pH value the Pb2+ and Pb(H2Cit)+ were the dominant lead species which are favorable for adsorption due to its easier approaching to the —COO–ligands in the saponified garlic peel partilces via charge attraction, and the appearance of Pb(HCit)0 and Pb(Cit) at pH above 3.0 inhibits the adsorption. Secondly, the real leach liquor was used for adsorption tests, and twice adsorption under the optimal conditons would decrease the residual concentrations of Pb, Cd, Cu and Zn to zero. After elution by using 0.1 mol/L nitric acid, the adsorbed metals can be recovered and garlic peel be reused for at least 10 cycles effectively. This study presents a prospective biosorption method for economical and efficient removal of the lead ions from soil washing wastewater with citric acid as the leaching reagent.

Keywords

Lead Biosorption Garlic peel Citrate Soil washing wastewater 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Alipanahpour D. E., Ghaedi M., Ghezelbash G. R., Asfaram A., Purkait M. K., J. Ind. Eng. Chem., 2017, 48, 162CrossRefGoogle Scholar
  2. [2]
    Cao W., Ma Y., Zhou W., Guo L., Chem. Res. Chinese Universities, 2015, 31(4), 508CrossRefGoogle Scholar
  3. [3]
    Raghubanshi H., Ngobeni S. M., Osikoya A. O., Shooto N. D., Dikio C. W., Naidoo E. B., Dikio E. D., Pandey R. K., Prakash R., J. Ind. Eng. Chem., 2017, 47, 169CrossRefGoogle Scholar
  4. [4]
    Moyo M., Guyo U., Mawenyiyo G., Zinyama N. P., Nyamunda B. C., J. Ind. Eng. Chem., 2015, 27, 126CrossRefGoogle Scholar
  5. [5]
    Pawar R. R., Bajaj H. C., Lee S. M., J. Ind. Eng. Chem., 2016, 34, 213CrossRefGoogle Scholar
  6. [6]
    Castro R. S. D., Caetano L., Ferreira G., Padilha P. M., Saeki M. J., Zara L. F., Martines M. A. U., Castro G. R., Ind. Eng. Chem. Res., 2011, 50(6), 3446CrossRefGoogle Scholar
  7. [7]
    Dubey A., Shiwani S., Int. J. Environ. Sci. Technol., 2011, 9, 15CrossRefGoogle Scholar
  8. [8]
    Gutha Y., Munagapati V. S., Int. J. Biol. Macromol., 2016, 93, 408CrossRefGoogle Scholar
  9. [9]
    Huang K., Zhu H., Environ. Sci. Pollut. Res., 2013, 20(7), 4424CrossRefGoogle Scholar
  10. [10]
    Liu G., Ling S., Zhan X., Lin Z., Zhang W., Lin K., Chemosphere, 2017, 173, 227CrossRefGoogle Scholar
  11. [11]
    Xu H., Yang L., Wang P., Liu Y., Peng M., J. Environ. Manage., 2008, 86(1), 319CrossRefGoogle Scholar
  12. [12]
    Chen C., Tian T., Wang M. K., Wang G., Geoderma, 2016, 275, 74CrossRefGoogle Scholar
  13. [13]
    Sidhu G. P. S., Singh H. P., Batish D. R., Kohli R. K., Chemosphere, 2017, 182, 129CrossRefGoogle Scholar
  14. [14]
    Lageman R., Clarke R. L., Pool W., Eng. Geol., 2005, 77(3), 191CrossRefGoogle Scholar
  15. [15]
    Gomes H. I., Dias-Ferreira C., Ribeiro A. B., Sci. Total. Environ., 2013, 445, 237CrossRefGoogle Scholar
  16. [16]
    Kurniawan T. A., Chan G. Y. S., Lo W. H., Babel S., Chem. Eng. J., 2006, 118(1), 83CrossRefGoogle Scholar
  17. [17]
    Bolan N., Kunhikrishnan A., Thangarajan R., Kumpiene J., Park J., Makino T., Kirkham M. B., Scheckel K., J. Hazard. Mater., 2014, 266, 141CrossRefGoogle Scholar
  18. [18]
    LÜ L., Jiang X., Jia L., Ai T., Wu H., Chem. Res. Chinese Universi-ties, 2017, 33(1), 112CrossRefGoogle Scholar
  19. [19]
    Cameselle C., Chirakkara R. A., Reddy K. R., Chemosphere, 2013, 93(4), 626CrossRefGoogle Scholar
  20. [20]
    Mao X., Han F. X., Shao X., Guo K., McComb J., Arslan Z., Zhang Z., Ecotox. Environ. Safe, 2016, 125, 16CrossRefGoogle Scholar
  21. [21]
    Aboughalma H., Bi R., Schlaak M., J. Environ. Sci. Health. Part A, 2008, 43(8), 926CrossRefGoogle Scholar
  22. [22]
    Altin A., Degirmenci M., Sci. Total. Environ., 2005, 337(1), 1CrossRefGoogle Scholar
  23. [23]
    Park B., Son Y., Ultraso. Sonochem., 2017, 35, 640CrossRefGoogle Scholar
  24. [24]
    Almazán-Sánchez P. T., Cotillas S., Sáez C., Solache-Ríos M. J., Martínez-Miranda V., Cañizares P., Linares-Hernández I., Rodrigo M. A., Appl. Catal. B: Environ., 2017, 213, 190CrossRefGoogle Scholar
  25. [25]
    Isoyama M., Wada S., J. Hazard. Mater., 2007, 143(3), 636CrossRefGoogle Scholar
  26. [26]
    Dermont G., Bergeron M., Mercier G., Richer-Lafleche M., J. Hazard. Mater., 2008, 152(1), 1CrossRefGoogle Scholar
  27. [27]
    Ghasemi E., Heydari A., Sillanpää M., Microchem. J., 2017, 131, 51CrossRefGoogle Scholar
  28. [28]
    Villen-Guzman M., Garcia-Rubio A., Paz-Garcia J. M., Rodri-guez-Maroto J. M., Garcia-Herruzo F., Vereda-Alonso C., Gomez-Lahoz C., Electrochim. Acta, 2015, 181, 82CrossRefGoogle Scholar
  29. [29]
    Khelifa A., Aoudj S., Moulay S., de Petris-Wery M., Chem. Eng. Process, 2013, 70, 110CrossRefGoogle Scholar
  30. [30]
    Pociecha M., Lestan D., Chemosphere, 2012, 86(8), 843CrossRefGoogle Scholar
  31. [31]
    Suanon F., Sun Q., Dimon B., Mama D., Yu C. P., J. Environ. Manage., 2016, 166, 341CrossRefGoogle Scholar
  32. [32]
    Guo X., Yang Z., Dong H., Guan X., Ren Q., Lv X., Jin X., Water Res., 2016, 88, 671CrossRefGoogle Scholar
  33. [33]
    Li J., Qin H., Zhang W., Shi Z., Zhao D., Guan X., Sep. Purif. Technol., 2017, 176, 40CrossRefGoogle Scholar
  34. [34]
    Fu R., Wen D., Xia X., Zhang W., Gu Y., Chem. Eng. J., 2017, 316, 601CrossRefGoogle Scholar
  35. [35]
    Gu Y. Y., Yeung A. T., J. Hazard. Mater., 2011, 191(1), 144CrossRefGoogle Scholar
  36. [36]
    Wang X., Chen J., Yan X., Wang X., Zhang J., Huang J., Zhao J., J. Ind. Eng. Chem., 2015, 27, 368CrossRefGoogle Scholar
  37. [37]
    Barakat M. A., Arab. J. Chem., 2011, 4(4), 361CrossRefGoogle Scholar
  38. [38]
    Javed M. A., Bhatti H. N., Hanif M. A., Nadeem R., Sep. Sci. Technol., 2007, 42(16), 3641CrossRefGoogle Scholar
  39. [39]
    Huang K., Xiu Y., Zhu H., Int. J. Environ. Sci. Technol., 2015, 12(8), 2485CrossRefGoogle Scholar
  40. [40]
    Huang K., Xiu Y., Zhu H., Desalin. Water. Treat., 2014, 52(37—39), 7108Google Scholar
  41. [41]
    Chand P., Bokare M., Pakade Y. B., Environ. Sci. Pollut. Res., 2017, 24(11), 10454CrossRefGoogle Scholar
  42. [42]
    Nadeem R., Manzoor Q., Iqbal M., Nisar J., J. Ind. Eng. Chem., 2016, 35, 185CrossRefGoogle Scholar
  43. [43]
    Zhang Q., Jiang P., Pan B., Zhang W., Lv L., Ind. Eng. Chem. Res., 2009, 48(9), 4495CrossRefGoogle Scholar
  44. [44]
    Castaldi P., Santona L., Enzo S., Melis P., J. Hazard. Mater., 2008, 156(1—3), 428Google Scholar
  45. [45]
    Dean J. A., Lange’s Handbook of Chemistry, Mcgraw-Hill, Inc., New York, 1998Google Scholar
  46. [46]
    Huang K., Solid State Physics, People’s Education Press, Beijing, 1966, 82Google Scholar
  47. [47]
    Krishnani K. K., Meng X., Christodoulatos C., Boddu V. M., J. Hazard. Mater., 2008, 153(3), 1222CrossRefGoogle Scholar
  48. [48]
    Ge Y., Song Q., Li Z., J. Ind. Eng. Chem., 2015, 23, 228CrossRefGoogle Scholar
  49. [49]
    Ghimire K. N., Kai H., Inoue K., Ohto K., Kawakita H., Harada H., Morita M., Bioresour. Technol., 2008, 99(7), 2436CrossRefGoogle Scholar
  50. [50]
    Boudrahem F., Aissani-Benissad F., Ait-Amar H., J. Environ. Manage., 2009, 90(10), 3031CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Metallurgical and Ecological EngineeringUniversity of Science and Technology BeijingBeijingP. R. China
  2. 2.Beijing Keda Advanced Technology CompanyBeijingP. R. China
  3. 3.Institute of BioresourceJiangxi Academy of SciencesNanchangP. R. China

Personalised recommendations