Chemical Research in Chinese Universities

, Volume 34, Issue 5, pp 792–797 | Cite as

Adsorption Mechanism of Composite Whisker on Copper Ions and Lead Ions

  • Juan Liu
  • Wenjing Xue
  • Yongchao Bao
  • Wanyi Cheng


A new kind of inorganic composite adsorbent based on chitin whiskers(CHW) and potassium tetratitanate whiskers(PTW) was synthesized via the thermal deposition to remove Cu2+ and Pb2+ from wastewater. CHW could be successfully coated on the surface of PTW when thermal treated 8 times. The adsorption process was better fitted with the Langmuir and Freundlich models. The adsorption process was more conformed to the Pseudo-second-order model. The results from XPS(X-ray photoelectron spectrum) further show that the adsorption mechanism between CHW-PTW and Cu2+, Pb2+ are both ion exchange and chemical adsorption. Thermodynamic parameters suggest that the adsorption processes are nonspontaneous. The adsorption of Cu2+ and Pb2+ is endothermic and exothermic, respectively.


Potassium tetratitanate whisker Chitin whisker Adsorption Mechanism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Juang R. S., Shao H. J., Adsorption, 2002 8(1), 71CrossRefGoogle Scholar
  2. [2]
    Ngah W. S. W., Fatinathan S., Chem. Eng. J., 2008 143(1), 62CrossRefGoogle Scholar
  3. [3]
    Alyüz B., Veli S., J. Hazard. Mater., 2009, 167(1—3), 482CrossRefGoogle Scholar
  4. [4]
    Zhang A. Y., Akashi T., Zhang B. P., Goto T., Mater. Lett., 2006 60(23), 2834CrossRefGoogle Scholar
  5. [5]
    Cheung P. J. F., McKay C. W. G., Sep. Purif. Technol., 2000, 19(1/2), 55CrossRefGoogle Scholar
  6. [6]
    Bae S. D., Sagehashi M., Sakoda A., J. Membr. Sci., 2005, 252(1/2), 155CrossRefGoogle Scholar
  7. [7]
    Park J., J. Alloys Compd., 2010, 492(1), L57CrossRefGoogle Scholar
  8. [8]
    Jiménez S., MicóM. M., Arnaldosa M., J. Water Pro. Eng., 2017 19, 248CrossRefGoogle Scholar
  9. [9]
    Zhou D., Zhang L., Guo S., Water Res., 2005 39(16), 3755CrossRefGoogle Scholar
  10. [10]
    Lü L., Jiang X., Jia L., Chem. Res. Chinese Universities, 2017 33(1), 112CrossRefGoogle Scholar
  11. [11]
    Zahra A. A., Mehdi I., Chem. Res. Chinese Universities, 2017 33(2), 318CrossRefGoogle Scholar
  12. [12]
    Guan W., Pan J., Ou H., Wang X., Zou X., Hu W., Li C., Wu X., Chem. Eng. J., 2011 167(1), 215CrossRefGoogle Scholar
  13. [13]
    Tan S., Zhang Y., Gong H., J. Water Environ. Technol., 2007 5(1), 13CrossRefGoogle Scholar
  14. [14]
    González M. Á. A., Gorokhovsky A. V., Elguezabal A. A., Mater. Sci. Eng. B, 2010, 174(1—3), 105CrossRefGoogle Scholar
  15. [15]
    Li C. X., Zhang X. J., Pan J. M., Xu P. P., Liu Y., Yan Y. S., Zhang Z. L., Adsorpt. Sci. Technol., 2009 27(9), 845CrossRefGoogle Scholar
  16. [16]
    Chui V., Mok K., Ng C., Luong B., Ma K., Environ. Int., 1996 22(4), 463CrossRefGoogle Scholar
  17. [17]
    Sag Y., Aktay Y., Pro. Biochem., 2000, 36(1/2), 157CrossRefGoogle Scholar
  18. [18]
    Shao J., Yang Y., Shi C., J. Appl. Polym. Sci., 2003 88(11), 2575CrossRefGoogle Scholar
  19. [19]
    Gyliene O., Rekertas R., Šalkauskas M., Water Res., 2002 36(16), 4128CrossRefGoogle Scholar
  20. [20]
    Liu J., Li Q. G., Zhang C. P., 2016 International Workshop on Material Science and Environmental Engineering, 2016 Google Scholar
  21. [21]
    Liu J., Li Q. G., Xue W. J., Materials, 2017 44(10), 743Google Scholar
  22. [22]
    Son E. B., Poo K. M., Chang J. S., Sci. Total Environ., 2018 615, 161CrossRefGoogle Scholar
  23. [23]
    Tang H., Zhou W., Lu A., Zhang L., J. Mater. Sci., 2014 49(1), 123CrossRefGoogle Scholar
  24. [24]
    Asheh S. A., Banat F., Omari R. A., Duvnjak Z., Chemosphere, 2000 41(5), 659CrossRefGoogle Scholar
  25. [25]
    Papageorgiou S. K., Katsaros F. K., Kouvelos E. P., Nolan J. W., Deit H. L., Kanellopoulos N. K., J. Hazard. Mater., 2006 137(3), 1765CrossRefGoogle Scholar
  26. [26]
    Karthikeyan T., Rajgopal S., Miranda L. R., J. Hazard. Mater., 2005, 124(1—3), 192CrossRefGoogle Scholar
  27. [27]
    Zhou J., Wu P., Dang Z., Zhu N., Li P., Wu J., Wang X., Chem. Eng. J., 2010 162(3), 1035CrossRefGoogle Scholar
  28. [28]
    Ngah W. W., Kamari A., Koay Y., Int. J. Biol. Macromol., 2004 34(3), 155CrossRefGoogle Scholar
  29. [29]
    Ngah W. W., Hanafiah M., Biochem. Eng. J., 2008 39(3), 521CrossRefGoogle Scholar
  30. [30]
    Ozcan A., Ozcan A. S., Tunali S., Akar T., Kiran I., J. Hazard. Mater., 2005, 124(1—3), 200CrossRefGoogle Scholar
  31. [31]
    Ali S. B., Jaouali I., Najar S. S., Ouederni A., J. Cleaner Production, 2017 142, 3809CrossRefGoogle Scholar
  32. [32]
    Adebisi G. A., Chowdhury Z. Z., Alaba P. A., J. Cleaner Production, 2017 148, 958CrossRefGoogle Scholar
  33. [33]
    Yan T., Luo X., Lin X., Yang J., Colloids Surf. A, 2017 512, 7CrossRefGoogle Scholar
  34. [34]
    Szlachta M., Chubar N., Chem. Eng. J., 2013 217(1), 159CrossRefGoogle Scholar
  35. [35]
    Liu T, Han X, Wang Y., J. Colloid Interface Sci., 2017 508, 405CrossRefGoogle Scholar
  36. [36]
    Wu R. X., Zheng G. F., Li W. W., J. Nanosci. Nanotechnol., 2018 18, 5624CrossRefGoogle Scholar
  37. [37]
    Lalchhingpuii, Diwakar T., Lalhmunsiama, Chem. Eng. J., 2017 328, 434CrossRefGoogle Scholar
  38. [38]
    Mustafa S., Shah K., Naeem A., Waseem M., Tahir M., J. Hazard. Mater., 2008 160(1), 1CrossRefGoogle Scholar
  39. [39]
    Sara S., Amir Reza A., Abbas M., Chem. Res. Chinese Universities, 2017 33(3), 471CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Juan Liu
    • 1
  • Wenjing Xue
    • 1
  • Yongchao Bao
    • 1
  • Wanyi Cheng
    • 1
  1. 1.College of Environment and Safety EngineeringQingdao University of Science and TechnologyQingdaoP. R. China

Personalised recommendations