Preparation and Characterization of SiO2/Co and C/Co Nanocomposites as Fisher-Tropsch Catalysts for CO2 Hydrogenation
- 44 Downloads
Abstract
To fabricate high-density cobalt-based catalysts, we first synthesized SiO2/C composites via a hydrothermal method and removed C and SiO2 by two different methods, respectively. The as-prepared SiO2 and C supports then reacted with cobalt acetylacetonate and N,N-dimethylformamide(DMF) under hydrothermal conditions to prepare SiO2/Co and C/Co nanocomposite catalysts. The catalysts were characterized by X-ray diffraction(XRD), scanning electron microscope(SEM), transmission electron microscopy(TEM), inductively coupled plasma mass spectrometry(ICP), energy dispersive X-ray fluoresence spectrometer(EDX), and nitrogen adsorption. It was found that hexagonal cobalt nanocrystals were successfully integrated with the mesoporous silica or carbon nanotube supports. SEM and TEM results show that SiO2/Co composites with a hollow/mesoporous sphere structure and C/Co composites with a tubular structure have been successfully synthesized. Both composite samples show superparamagnetism exhibiting an S-type hysteresis loop, which originated from the cobalt nanoparticles in the samples. Nitrogen adsorption/desorption curves suggest that the SiO2 and C supports have well-developed pore structures and large specific surface areas, and the loading and good dispersity of cobalt nanoparticles on the supports were proven by ICP and EDX. Moreover, the samples exhibited good and stable catalytic activity, demonstrating that the two composites are suitable catalysts for Fischer-Tropsch CO2 hydrogenation.
Keywords
Mesoporous SiO2 Carbon nanotube Cobalt based catalyst Fischer-Tropsch reaction CO2 hydrogenationPreview
Unable to display preview. Download preview PDF.
References
- [1]Bruce L., Takos J., Turney T. W., ACS Symposium Series, 1990, 437, 129Google Scholar
- [2]Rodriguez Vallejo D. F., de Klerk A., Energy & Fuels, 2013, 27(6), 3137CrossRefGoogle Scholar
- [3]Fischer N., Clapham B., Feltes T., Claeys M., ACS Catalysis, 2015, 5(1), 113CrossRefGoogle Scholar
- [4]de Klerk A., de Vaal P. L., Industrial & Engineering Chemistry Research., 2008, 47(18), 6870CrossRefGoogle Scholar
- [5]Dai Y. Y., Yu F., Li Z. J., An Y. L., Lin T. J., Yang Y. Z., Zhong L. S., Wang H., Sun Y. H., Chinese Journal of Chemistry, 2017, 35(6), 918CrossRefGoogle Scholar
- [6]Kibby C., Jothimurugesan K., Das T., Lacheen H. S., Rea T., Saxton R. J., Catalysis Today, 2013, 215, 131CrossRefGoogle Scholar
- [7]Arsalanfar M., Mirzaei A. A., Bozorgzadeh H. R., Journal of Industrial and Engineering Chemistry, 2013, 19(2), 478CrossRefGoogle Scholar
- [8]Khusnutdinova J. R., Garg J. A., Milstein D., ACS Catalysis, 2015, 5(4), 2416CrossRefGoogle Scholar
- [9]Xiang Y. Z., Chitry V., Liddicoat P., Felfer P., Cairney J., Ringer S., Kruse N., Journal of the American Chemical Society, 2013, 135(19), 7114CrossRefPubMedGoogle Scholar
- [10]Chen Y., Choi S., Thompson L. T., ACS Catalysis, 2015, 5(3), 1717CrossRefGoogle Scholar
- [11]Yang X. F., Kattel S., Senanayake S. D., Boscoboinik J. A., Nie X. W., Graciani J., Rodriguez J. A., Liu P., Stacchiola D. J., Chen J. G. G., J. Am. Chem. Soc., 2015, 137(32), 10104CrossRefPubMedGoogle Scholar
- [12]Zhang P., Tong J. L., Huang K., ACS Sustainable Chemistry & Engineering, 2016, 4(12), 7056CrossRefGoogle Scholar
- [13]Ma D. W., Niu S. T., Zhao J. L., Jiang X., Jiang Y. W., Zhang X. J., Sun T. M., Chinese Journal of Chemistry, 2017, 35(11), 1661CrossRefGoogle Scholar
- [14]Wang C. Z., Zhang Y., Wang Y. Z., Zhao Y. X., Chinese Journal of Chemistry, 2017, 35(1), 113CrossRefGoogle Scholar
- [15]Chang F. W., Hsiao T. J., Shih J. D., Industrial & Engineering Chemistry Research, 1998, 37(10), 3838CrossRefGoogle Scholar
- [16]Peng G. W., Sibener S. J., Schatz G. C., Ceyer S. T., Mavrikakis M., Journal of Physical Chemistry C, 2012, 116(4), 3001CrossRefGoogle Scholar
- [17]Hutschka F., Dedieu A., Eichberger M., Fornika. R., Leitner W., J. Am. Chem. Soc., 1997, 119(19), 4432CrossRefGoogle Scholar
- [18]Theleritis D., Souentie S., Siokou A., Katsaounis A., Vayenas C. G., ACS Catalysis, 2012, 2(5), 770CrossRefGoogle Scholar
- [19]Fong H., Peters J. C., Inorganic Chemistry, 2015, 54(11), 5124CrossRefPubMedGoogle Scholar
- [20]Yu H. F., Liao P. Q., Chem. Res. Chinese Universities, 2016, 32(3), 390CrossRefGoogle Scholar
- [21]Spentzos A. Z., Barnes C. L., Bernskoetter W. H., Inorganic Chemistry, 2016, 55(16), 8225CrossRefPubMedGoogle Scholar
- [22]Liu H., Yang S. Z., Wang F., Bai C. X., Hu Y. M., Zhang X. Q., Chin. J. Polym. Sci., 2016, 34(9), 1060CrossRefGoogle Scholar
- [23]Su B., Cao Z. C., Shi Z. J., Accounts of Chemical Research, 2015, 48(3), 886CrossRefPubMedGoogle Scholar
- [24]Melaet G., Ralston W. T., Li C. S., Alayoglu S., An K. J., Musselwhite N., Kalkan B., Somorjai G. A., J. Am. Chem. Soc., 2014, 136(6), 2260CrossRefPubMedGoogle Scholar
- [25]Jeletic M. S., Helm M. L., Hulley E. B., Mock M. T., Appel A. M., Linehan J. C., ACS Catalysis, 2014, 4(10), 3755CrossRefGoogle Scholar
- [26]Grandjean D., Pelipenko V., Batyrev E. D., van den Heuvel J. C., Khassin A. A., Yurieva T. M., Weckhuysen B. M., Journal of Physical Chemistry C, 2011, 115(41), 20175Google Scholar
- [27]Xu S. C., Walter E. D., Zhao Z. C., Hu M. Y., Han X. W., Hu J. Z., Bao X. H., Journal of Physical Chemistry C., 2015, 119(36), 21219CrossRefGoogle Scholar
- [28]Kwak J. H., Kovarik L., Szanyi J., ACS Catalysis, 2013, 3(11), 2449CrossRefGoogle Scholar
- [29]Lwin S., Wachs I. E., ACS Catalysis, 2016, 6(1), 272CrossRefGoogle Scholar
- [30]Hu H., Cai S. X., Li H. R., Huang L., Shi L. Y., Zhang D. S., ACS Catalysis, 2015, 5(10), 6069CrossRefGoogle Scholar
- [31]Lu C. Q., Liu J. H., Jin C., Guo Y., Wang G. C., Chem. Res. Chinese Universities, 2017, 33(3), 406CrossRefGoogle Scholar
- [32]Xie H., Lu J. L., Shekhar M., Elam J. W., Delgass W. N., Ribeiro F. H., Weitz E., Poeppelmeier K. R., ACS Catalysis, 2013, 3(1), 61CrossRefGoogle Scholar
- [33]Samson K., Śliwa M., Socha R. P., Góra-Marek. K., Mucha D., Rutkowska-Zbik D., Paul J. F., Ruggiero-Mikołajczyk M., Grabowski R., Słoczyński J., ACS Catalysis, 2014, 4(10), 3730Google Scholar
- [34]Zhang C. W., Xu L. B., Shan N. N., Sun T. T., Chen J. F., Yan Y. S., ACS Catalysis, 2014, 4(6), 1926CrossRefGoogle Scholar
- [35]Duan L. L., Fu R., Xiao Z. G., Zhao Q. F., Wang J. Q., Chen S. J., Wan Y., ACS Catalysis, 2015, 5(2), 575CrossRefGoogle Scholar
- [36]Li N., Wang X. M., Derrouiche S., Haller G. L., Pfefferle L. D., ACS Nano., 2010, 4(3), 1759CrossRefPubMedGoogle Scholar
- [37]Pentsak E. O., Gordeev E. G., Ananikov V. P., ACS Catalysis, 2014, 4(11), 3806CrossRefGoogle Scholar
- [38]Chen Y., Chen H. R., Shi J. L., Accounts of Chemical Research, 2014, 47(1), 125CrossRefPubMedGoogle Scholar
- [39]Fu T., Cheng R. H., He X. L., Liu Z., Tian Z., Liu B. P., Chin. J. Polym. Sci., 2017, 35(6), 739CrossRefGoogle Scholar
- [40]Lin X., Fu L. L., Chen Y., Zhu R. L., Wang S. Y., Liu Z. G., ACS Applied Materials & Interfaces, 2016, 8(40), 26809CrossRefGoogle Scholar
- [41]Guo T. Y., Du J. P., Wang S., Wu J. T., Li J. P., Chem. Res. Chinese Universities, 2016, 32(5), 843CrossRefGoogle Scholar
- [42]den Otter J. H., Nijveld S. R., de Jong K. P., ACS Catalysis, 2016, 6(3), 1616CrossRefGoogle Scholar
- [43]Vosoughi V., Badoga S., Dalai A. K., Abatzoglou N., Industrial & Engineering Chemistry Research, 2016, 55(21), 6049CrossRefGoogle Scholar
- [44]Fu T. J., Lv J., Li Z. H., Industrial & Engineering Chemistry Research, 2014, 53(4), 1342CrossRefGoogle Scholar
- [45]Kuo C. H., Li W. K., Song W. Q., Luo Z., Poyraz A. S., Guo Y., Ma A. W. K., Suib S. L., He J., ACS Applied Materials & Interfaces, 2014, 6(14), 11311CrossRefGoogle Scholar
- [46]Chen B., Chen J., Li J. Y., Tong X., Zhao H. C., Wang L. P., Chin. J. Polym. Sci., 2017, 35(3), 446CrossRefGoogle Scholar
- [47]Guo Y. L., Zhang R. Z., Wu K., Chen F., Fu Q., Chin. J. Polym. Sci., 2017, 35(12), 1497CrossRefGoogle Scholar