Advertisement

Chemical Research in Chinese Universities

, Volume 34, Issue 4, pp 635–642 | Cite as

Preparation and Characterization of SiO2/Co and C/Co Nanocomposites as Fisher-Tropsch Catalysts for CO2 Hydrogenation

  • Fuqin Han
  • Zhe Zhang
  • Na Niu
  • Jian Li
Article
  • 17 Downloads

Abstract

To fabricate high-density cobalt-based catalysts, we first synthesized SiO2/C composites via a hydrothermal method and removed C and SiO2 by two different methods, respectively. The as-prepared SiO2 and C supports then reacted with cobalt acetylacetonate and N,N-dimethylformamide(DMF) under hydrothermal conditions to prepare SiO2/Co and C/Co nanocomposite catalysts. The catalysts were characterized by X-ray diffraction(XRD), scanning electron microscope(SEM), transmission electron microscopy(TEM), inductively coupled plasma mass spectrometry(ICP), energy dispersive X-ray fluoresence spectrometer(EDX), and nitrogen adsorption. It was found that hexagonal cobalt nanocrystals were successfully integrated with the mesoporous silica or carbon nanotube supports. SEM and TEM results show that SiO2/Co composites with a hollow/mesoporous sphere structure and C/Co composites with a tubular structure have been successfully synthesized. Both composite samples show superparamagnetism exhibiting an S-type hysteresis loop, which originated from the cobalt nanoparticles in the samples. Nitrogen adsorption/desorption curves suggest that the SiO2 and C supports have well-developed pore structures and large specific surface areas, and the loading and good dispersity of cobalt nanoparticles on the supports were proven by ICP and EDX. Moreover, the samples exhibited good and stable catalytic activity, demonstrating that the two composites are suitable catalysts for Fischer-Tropsch CO2 hydrogenation.

Keywords

Mesoporous SiO2 Carbon nanotube Cobalt based catalyst Fischer-Tropsch reaction CO2 hydrogenation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bruce L., Takos J., Turney T. W., ACS Symposium Series, 1990, 437, 129Google Scholar
  2. [2]
    Rodriguez Vallejo D. F., de Klerk A., Energy & Fuels, 2013, 27(6), 3137CrossRefGoogle Scholar
  3. [3]
    Fischer N., Clapham B., Feltes T., Claeys M., ACS Catalysis, 2015, 5(1), 113CrossRefGoogle Scholar
  4. [4]
    de Klerk A., de Vaal P. L., Industrial & Engineering Chemistry Research., 2008, 47(18), 6870CrossRefGoogle Scholar
  5. [5]
    Dai Y. Y., Yu F., Li Z. J., An Y. L., Lin T. J., Yang Y. Z., Zhong L. S., Wang H., Sun Y. H., Chinese Journal of Chemistry, 2017, 35(6), 918CrossRefGoogle Scholar
  6. [6]
    Kibby C., Jothimurugesan K., Das T., Lacheen H. S., Rea T., Saxton R. J., Catalysis Today, 2013, 215, 131CrossRefGoogle Scholar
  7. [7]
    Arsalanfar M., Mirzaei A. A., Bozorgzadeh H. R., Journal of Industrial and Engineering Chemistry, 2013, 19(2), 478CrossRefGoogle Scholar
  8. [8]
    Khusnutdinova J. R., Garg J. A., Milstein D., ACS Catalysis, 2015, 5(4), 2416CrossRefGoogle Scholar
  9. [9]
    Xiang Y. Z., Chitry V., Liddicoat P., Felfer P., Cairney J., Ringer S., Kruse N., Journal of the American Chemical Society, 2013, 135(19), 7114CrossRefGoogle Scholar
  10. [10]
    Chen Y., Choi S., Thompson L. T., ACS Catalysis, 2015, 5(3), 1717CrossRefGoogle Scholar
  11. [11]
    Yang X. F., Kattel S., Senanayake S. D., Boscoboinik J. A., Nie X. W., Graciani J., Rodriguez J. A., Liu P., Stacchiola D. J., Chen J. G. G., J. Am. Chem. Soc., 2015, 137(32), 10104CrossRefGoogle Scholar
  12. [12]
    Zhang P., Tong J. L., Huang K., ACS Sustainable Chemistry & Engineering, 2016, 4(12), 7056CrossRefGoogle Scholar
  13. [13]
    Ma D. W., Niu S. T., Zhao J. L., Jiang X., Jiang Y. W., Zhang X. J., Sun T. M., Chinese Journal of Chemistry, 2017, 35(11), 1661CrossRefGoogle Scholar
  14. [14]
    Wang C. Z., Zhang Y., Wang Y. Z., Zhao Y. X., Chinese Journal of Chemistry, 2017, 35(1), 113CrossRefGoogle Scholar
  15. [15]
    Chang F. W., Hsiao T. J., Shih J. D., Industrial & Engineering Chemistry Research, 1998, 37(10), 3838CrossRefGoogle Scholar
  16. [16]
    Peng G. W., Sibener S. J., Schatz G. C., Ceyer S. T., Mavrikakis M., Journal of Physical Chemistry C, 2012, 116(4), 3001CrossRefGoogle Scholar
  17. [17]
    Hutschka F., Dedieu A., Eichberger M., Fornika. R., Leitner W., J. Am. Chem. Soc., 1997, 119(19), 4432CrossRefGoogle Scholar
  18. [18]
    Theleritis D., Souentie S., Siokou A., Katsaounis A., Vayenas C. G., ACS Catalysis, 2012, 2(5), 770CrossRefGoogle Scholar
  19. [19]
    Fong H., Peters J. C., Inorganic Chemistry, 2015, 54(11), 5124CrossRefGoogle Scholar
  20. [20]
    Yu H. F., Liao P. Q., Chem. Res. Chinese Universities, 2016, 32(3), 390CrossRefGoogle Scholar
  21. [21]
    Spentzos A. Z., Barnes C. L., Bernskoetter W. H., Inorganic Chemistry, 2016, 55(16), 8225CrossRefGoogle Scholar
  22. [22]
    Liu H., Yang S. Z., Wang F., Bai C. X., Hu Y. M., Zhang X. Q., Chin. J. Polym. Sci., 2016, 34(9), 1060CrossRefGoogle Scholar
  23. [23]
    Su B., Cao Z. C., Shi Z. J., Accounts of Chemical Research, 2015, 48(3), 886CrossRefGoogle Scholar
  24. [24]
    Melaet G., Ralston W. T., Li C. S., Alayoglu S., An K. J., Musselwhite N., Kalkan B., Somorjai G. A., J. Am. Chem. Soc., 2014, 136(6), 2260CrossRefGoogle Scholar
  25. [25]
    Jeletic M. S., Helm M. L., Hulley E. B., Mock M. T., Appel A. M., Linehan J. C., ACS Catalysis, 2014, 4(10), 3755CrossRefGoogle Scholar
  26. [26]
    Grandjean D., Pelipenko V., Batyrev E. D., van den Heuvel J. C., Khassin A. A., Yurieva T. M., Weckhuysen B. M., Journal of Physical Chemistry C, 2011, 115(41), 20175Google Scholar
  27. [27]
    Xu S. C., Walter E. D., Zhao Z. C., Hu M. Y., Han X. W., Hu J. Z., Bao X. H., Journal of Physical Chemistry C., 2015, 119(36), 21219CrossRefGoogle Scholar
  28. [28]
    Kwak J. H., Kovarik L., Szanyi J., ACS Catalysis, 2013, 3(11), 2449CrossRefGoogle Scholar
  29. [29]
    Lwin S., Wachs I. E., ACS Catalysis, 2016, 6(1), 272CrossRefGoogle Scholar
  30. [30]
    Hu H., Cai S. X., Li H. R., Huang L., Shi L. Y., Zhang D. S., ACS Catalysis, 2015, 5(10), 6069CrossRefGoogle Scholar
  31. [31]
    Lu C. Q., Liu J. H., Jin C., Guo Y., Wang G. C., Chem. Res. Chinese Universities, 2017, 33(3), 406CrossRefGoogle Scholar
  32. [32]
    Xie H., Lu J. L., Shekhar M., Elam J. W., Delgass W. N., Ribeiro F. H., Weitz E., Poeppelmeier K. R., ACS Catalysis, 2013, 3(1), 61CrossRefGoogle Scholar
  33. [33]
    Samson K., Śliwa M., Socha R. P., Góra-Marek. K., Mucha D., Rutkowska-Zbik D., Paul J. F., Ruggiero-Mikołajczyk M., Grabowski R., Słoczyński J., ACS Catalysis, 2014, 4(10), 3730Google Scholar
  34. [34]
    Zhang C. W., Xu L. B., Shan N. N., Sun T. T., Chen J. F., Yan Y. S., ACS Catalysis, 2014, 4(6), 1926CrossRefGoogle Scholar
  35. [35]
    Duan L. L., Fu R., Xiao Z. G., Zhao Q. F., Wang J. Q., Chen S. J., Wan Y., ACS Catalysis, 2015, 5(2), 575CrossRefGoogle Scholar
  36. [36]
    Li N., Wang X. M., Derrouiche S., Haller G. L., Pfefferle L. D., ACS Nano., 2010, 4(3), 1759CrossRefGoogle Scholar
  37. [37]
    Pentsak E. O., Gordeev E. G., Ananikov V. P., ACS Catalysis, 2014, 4(11), 3806CrossRefGoogle Scholar
  38. [38]
    Chen Y., Chen H. R., Shi J. L., Accounts of Chemical Research, 2014, 47(1), 125CrossRefGoogle Scholar
  39. [39]
    Fu T., Cheng R. H., He X. L., Liu Z., Tian Z., Liu B. P., Chin. J. Polym. Sci., 2017, 35(6), 739CrossRefGoogle Scholar
  40. [40]
    Lin X., Fu L. L., Chen Y., Zhu R. L., Wang S. Y., Liu Z. G., ACS Applied Materials & Interfaces, 2016, 8(40), 26809CrossRefGoogle Scholar
  41. [41]
    Guo T. Y., Du J. P., Wang S., Wu J. T., Li J. P., Chem. Res. Chinese Universities, 2016, 32(5), 843CrossRefGoogle Scholar
  42. [42]
    den Otter J. H., Nijveld S. R., de Jong K. P., ACS Catalysis, 2016, 6(3), 1616CrossRefGoogle Scholar
  43. [43]
    Vosoughi V., Badoga S., Dalai A. K., Abatzoglou N., Industrial & Engineering Chemistry Research, 2016, 55(21), 6049CrossRefGoogle Scholar
  44. [44]
    Fu T. J., Lv J., Li Z. H., Industrial & Engineering Chemistry Research, 2014, 53(4), 1342CrossRefGoogle Scholar
  45. [45]
    Kuo C. H., Li W. K., Song W. Q., Luo Z., Poyraz A. S., Guo Y., Ma A. W. K., Suib S. L., He J., ACS Applied Materials & Interfaces, 2014, 6(14), 11311CrossRefGoogle Scholar
  46. [46]
    Chen B., Chen J., Li J. Y., Tong X., Zhao H. C., Wang L. P., Chin. J. Polym. Sci., 2017, 35(3), 446CrossRefGoogle Scholar
  47. [47]
    Guo Y. L., Zhang R. Z., Wu K., Chen F., Fu Q., Chin. J. Polym. Sci., 2017, 35(12), 1497CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of ScienceNortheast Forestry UniversityHarbinP. R. China
  2. 2.Key Laboratory of Bio-based Material Science and Technology, Ministry of EducationNortheast Forestry UniversityHarbinP. R. China

Personalised recommendations