Advertisement

Chemical Research in Chinese Universities

, Volume 34, Issue 4, pp 643–648 | Cite as

Structure and Excitation Dynamics of β-Carotene Aggregates in Cetyltrimethylammonium Bromide Micelle

  • Di Zhang
  • Liming Tan
  • Jia Dong
  • Jiaqiang Yi
  • Peng Wang
  • Jianping Zhang
Article
  • 32 Downloads

Abstract

The β-carotene(β-Car) aggregate was prepared by self-assembly in cetyltrimethylammonium bromide (CTAB) micelle. The ground state absorption measurement showed that the aggregate has J-type characteristics and resonance Raman spectra gave the intrinsic explanation of molecular interaction in aggregate. Upon excitation at the optical allowed S2 state of aggregate, direct generation of triplet state via singlet fission(SF) mechanism was observed. Excitation dynamics was elucidated by fs-transient absorption spectroscopy and ns-flash photolysis, respectively. The triplet state life time of aggregate was found to be independent of the ambient oxygen molecules.

Keywords

β-Carotene aggregate Cetyltrimethylammonium bromide micelle Singlet fission Triplet state Excitation state dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2018_7379_MOESM1_ESM.pdf (481 kb)
Structure and Excitation Dynamics of β-Carotene Aggregates in Cetyltrimethylammonium bromide (CTAB) Micelle

References

  1. [1]
    Köhn S., Kolbe H., Korger M., Köpsel C., Mayer B., Auweter H., Lüddecke E., Bettermann H., Martin H. D.; Ed. by Britton G., Liaaen-Jensen S., Pfander H., Carotenoids, Volume 4: Natural Functions, Springer, Berlin, 2008, 53Google Scholar
  2. [2]
    Gruszecki W. I., Zelent B., Leblan R. M., Chem. Phys. Lett., 1990, 171(5), 563CrossRefGoogle Scholar
  3. [3]
    Köpsel C., Möltgen, H., Schuch H., Auweter H., Kleinermanns K., Martin H. D., Bettermann H., J. Mol. Struct., 2005, 750(1—3), 109CrossRefGoogle Scholar
  4. [4]
    Spano F. C., J. Am. Chem. Soc., 2009, 131(12), 426CrossRefGoogle Scholar
  5. [5]
    Wang C., Berg C. J., Hsu C. C., Merrill B. A., Tauber M. J., J. Phys. Chem. B, 2012, 116(35), 10617CrossRefPubMedGoogle Scholar
  6. [6]
    Adamkiewicz P., Sujak A., Gruszecki W. I., J. Mol. Struct., 2013, 1046(1046), 44CrossRefGoogle Scholar
  7. [7]
    Hempel J., Schädle C. N., Leptihn S., Carle R., Schweiggert R. M., J. Photochem. Photobiol. A, 2016, 317, 161CrossRefGoogle Scholar
  8. [8]
    Zajac G., Kaczor A., Pallares Zazo A., Mlynarski J., Dudek M., Ba-ranska M., J. Phys. Chem. B, 2016, 120(17), 4028Google Scholar
  9. [9]
    Saito S., Tasumi M., Eugster C. H., J. Raman Spectrosc., 1983, 14(14), 299CrossRefGoogle Scholar
  10. [10]
    Hashimoto H., Kiyohara D., Kamo Y., Komuta H., Mori Y., Jpn. J. Appl. Phys., 1996, 35(1), 281CrossRefGoogle Scholar
  11. [11]
    Mori Y., J. Raman Spectrosc., 2001, 32(6/7), 543CrossRefGoogle Scholar
  12. [12]
    Gaier K., Angerhofer A., Wolf H. C., Chem. Phys. Lett., 1991, 187(1/2), 10Google Scholar
  13. [13]
    Mori Y., Yamano K., Hashimoto H., Chem. Phys. Lett., 1996, 254(1), 84CrossRefGoogle Scholar
  14. [14]
    Okamoto H., Hamaguchi H. O., Tasumi M., J. Raman Spectrosc., 1989, 20(11), 751CrossRefGoogle Scholar
  15. [15]
    Zsila F., Bikádi Z., Keresztes Z., Deli J., Simonyi M., J. Phys. Chem. B,2001, 105(39), 9413CrossRefGoogle Scholar
  16. [16]
    Spano F. C., Acc. Chem. Res., 2010, 43(3), 429CrossRefPubMedGoogle Scholar
  17. [17]
    Alster J, Polívka T, Arellano J. B., Chábera P, Vácha F., Chem. Phys., 2010, 373(1), 90CrossRefGoogle Scholar
  18. [18]
    Cvetkovic D., Fiedor L., Wisniewskabecker A., Markovic D., Curr. Anal. Chem., 2013, 9(1), 86CrossRefGoogle Scholar
  19. [19]
    Polyakov N. E., Magyar A., Kispert L. D., J. Phys. Chem. B, 2013, 117(35), 10173CrossRefPubMedGoogle Scholar
  20. [20]
    Kita S., Fujii R., Cogdell R. J., Hashimoto H., J. Photochem. Photo-biol. A, 2015, 313, 3CrossRefGoogle Scholar
  21. [21]
    Chang H. T., Chang Y. Q., Han R. M., Wang P., Zhang J. P., Skibsted L. H., J. Agric. Food Chem., 2017, 65(29), 6058CrossRefPubMedGoogle Scholar
  22. [22]
    Smith M. B., Michl J., Chem. Rev., 2010, 110(11), 6891CrossRefPubMedGoogle Scholar
  23. [23]
    Wang X. F., Wang L., Wang Z., Wang Y., Tamai N., Hong Z., Kido J., J. Phys. Chem. C, 2013, 117(2), 804CrossRefGoogle Scholar
  24. [24]
    Billsten H. H., Villy Sundström A., Polívka T., J. Phys. Chem. A, 2005, 109(8), 1521CrossRefPubMedGoogle Scholar
  25. [25]
    Wang C., Tauber M. J., J. Am. Chem. Soc., 2010, 132(40), 13988CrossRefPubMedGoogle Scholar
  26. [26]
    Wang C., Angelella M., Kuo C. H., Tauber M. J., Proc. SPIE, 2012, 8459, 845905CrossRefGoogle Scholar
  27. [27]
    Fuciman M., Durchan M., Šlouf V., Keşan G., Polívka T., Chem. Phys. Lett., 2013, s568/569(3), 21Google Scholar
  28. [28]
    Musser A. J., Maiuri M., Brida D., Cerullo G., Friend R. H., Clark J., J. Am. Chem. Soc., 2015, 137(15), 5130CrossRefPubMedPubMedCentralGoogle Scholar
  29. [29]
    Yu J., Fu L. M., Yu L. J., Shi Y., Wang P., Wang-Otomo Z. Y., Zhang J. P., J. Am. Chem. Soc., 2017, 139(44), 15984CrossRefPubMedGoogle Scholar
  30. [30]
    Liu L. H., Wang C. F., Zhuo K. L., Chem. Res. Chinese Universities, 2016, 32(6), 992CrossRefGoogle Scholar
  31. [31]
    Auweter H., Haberkorn H., Heckmann W., Horn D., Lüddecke E., Rieger J., Weiss H., Angew. Chem. Int. Ed., 1999, 38(15), 2188CrossRefGoogle Scholar
  32. [32]
    Tschirner N., Schenderlein M., Brose K., Schlodder E., Mroginski M. A., Thomsen C., Hildebrandt P., Phys. Chem. Chem. Phys., 2009, 11(48), 11471CrossRefPubMedGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Di Zhang
    • 1
  • Liming Tan
    • 1
  • Jia Dong
    • 1
  • Jiaqiang Yi
    • 1
  • Peng Wang
    • 1
  • Jianping Zhang
    • 1
  1. 1.Department of ChemistryRenmin University of ChinaBeijingP. R. China

Personalised recommendations