Advertisement

Chemical Research in Chinese Universities

, Volume 34, Issue 4, pp 649–654 | Cite as

Preparation of Ag3PO4/AgBr Hybrids Using a Facile Grinding Method and Their Applications as Photocatalysts

  • Xiaojun Zhang
  • Keqiang Yan
  • Yu Song
  • Zhe Wang
  • Jialong Wu
  • Dayu Yu
Article
  • 6 Downloads

Abstract

Highly efficient visible-light-induced Ag3PO4/AgBr hybrids were prepared via a facile and effective grinding method. The synthetic route was simply achieved through the grinding of Ag3PO4 with NaBr in an agate mortar at room temperature. During the grinding process, the mechanochemical effect induced the solid-state reaction of Ag3PO4 and NaBr to form AgBr nanoparticles on the surface of the Ag3PO4 particles. After calcination and wa- shing, Ag3PO4/AgBr hybrids were obtained. The AgBr shells prevented photocorrosion and improved the structural stability in water. Interestingly, the compositions, morphologies and optical absorption properties of the Ag3PO4/AgBr hybrids could be finely controlled by adjusting the NaBr content and grinding time. The photocatalytic activities of the as-prepared samples were investigated in terms of the degradation of rhodamine B(RhB) under visible light irradiation. The photocatalytic activities of the Ag3PO4/AgBr hybrids were much improved compared to those of of Ag3PO4 or AgBr individually. Under visible light irradiation for 1 h, the Ag3PO4/AgBr hybrids exhibited a 66.8%―76.8% increase in photocatalytic efficiency compared to pure Ag3PO4.

Keywords

Ag3PO4 AgBr Photocatalytic activity Grinding method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Liu Y. J., Zhou F., Zhang S., Yang Y. F., Yin Y. F., Chem. Res. Chi-nese Universities, 2016, 32(2), 284CrossRefGoogle Scholar
  2. [2]
    Guo W. M., Liu H. T., Chem. Res. Chinese Universities, 2017, 33(1), 129CrossRefGoogle Scholar
  3. [3]
    Liu X., Dang R., Dong W. J., Huang X. B., Tang J., Gao H. Y., Wang G., Appl. Catal. B: Environ., 2017, 209, 506CrossRefGoogle Scholar
  4. [4]
    Jia C., Xie X. W., Ge M., Zhao Y. Q., Zhang H., Li Z. L., Cui G. H., Mater. Sci. Semicond. Proc., 2015, 36, 71CrossRefGoogle Scholar
  5. [5]
    Liu X. Q., Chen W. J., Jiang H., Chem. Eng. J., 2017, 308, 889CrossRefGoogle Scholar
  6. [6]
    Kasumata H., Hayashi T., Taniguchi M., Suzuki T., Kaneco S., Mater. Res. Bull., 2015, 63, 116CrossRefGoogle Scholar
  7. [7]
    Yan J., Wang C., Xu H., Xu Y. G., She X. J., Chen J. J., Song Y. H., Li H. M., Zhang Q., Appl. Surf. Sci., 2013, 287(12), 178CrossRefGoogle Scholar
  8. [8]
    Wang D. S., Li L., Luo Q. Z., An J., Li X. Y., Yin R., Zhao M. M., Appl. Surf. Sci., 2014, 321, 439CrossRefGoogle Scholar
  9. [9]
    Kasumata H., Hayashi T., Taniguchi M., Suzuki T., Kaneco S., Mater. Sci. Semicond. Proc., 2014, 25(18), 68CrossRefGoogle Scholar
  10. [10]
    Wang B., Gu X. Q., Zhao Y. L., Qiang Y. H., Appl. Surf. Sci., 2013, 283(11), 396CrossRefGoogle Scholar
  11. [11]
    Amornpitoksuk P., Suwanboon S., Adv. Powder Technol., 2014, 25(3), 1026CrossRefGoogle Scholar
  12. [12]
    Bi Y. P., Ouyang S. X., Cao J. Y., Ye J. H., Phys. Chem. Chem. Phys., 2011, 13(21), 10071CrossRefGoogle Scholar
  13. [13]
    Tian J., Yan T. J., Qiao Z., Wang L. L., Li W. J., You J. M., Huang B. B., Appl. Catal. B: Environ., 2017, 209, 566CrossRefGoogle Scholar
  14. [14]
    Liu Z. J., Liu W., Wang Y., Guo M. L., Mater. Lett., 2016, 178, 83CrossRefGoogle Scholar
  15. [15]
    Sun Z. M., Yao G. Y., Zhang X. Y., Zheng S. L., Frost R., Appl. Clay Sci., 2016, 129, 7CrossRefGoogle Scholar
  16. [16]
    Song L. M., Zhang S. J., J. Hazard. Mater., 2010, 174(1―3), 563CrossRefGoogle Scholar
  17. [17]
    Lu J. F., Zhang Q. W., Wang J., Saito F., Uchida M., Powder Technol., 2006, 162(1), 33CrossRefGoogle Scholar
  18. [18]
    Sorescu M., Xu T. H., Burnett J. D., Aitken J. A., J. Magn. Magn. Mater., 2015, 387, 37CrossRefGoogle Scholar
  19. [19]
    Billik P., Plesch G., Mater. Lett., 2007, 61(4/5), 1183CrossRefGoogle Scholar
  20. [20]
    Wang J., Teng F., Chen M. D., Xu J. J., Song Y. Q., Zhou X. L., CrystEngComm, 2012, 15, 39CrossRefGoogle Scholar
  21. [21]
    Li F. F., Li Z. H., Zhang M. X., Shen Y., Cai Y. F., Li Y. R., He X. Y., Chen C., RSC Adv., 2017, 7(55), 34705CrossRefGoogle Scholar
  22. [22]
    Xie J. L., Yang Y. F., He H. P., Cheng D., Mao M. M., Jiang Q. X., Song L. X., Xiong J., Appl. Surf. Sci., 2015, 355, 921CrossRefGoogle Scholar
  23. [23]
    Wang Y. F., Li X. L., Wang Y. W., Fan C. M., J. Solid State Chem., 2013, 202, 51CrossRefGoogle Scholar
  24. [24]
    Zhao Y. J., Cao J., Lin H. L., Wang Y. J., Chen S. F., Mater. Res. Bull., 2015, 62, 168CrossRefGoogle Scholar
  25. [25]
    Song L. M., Yang J. F., Zhang S. J., Chem. Eng. J., 2017, 309, 222CrossRefGoogle Scholar
  26. [26]
    Chen X. J., Dai Y. Z., Liu T. H., Guo J., Wang X. Y., Li F. F., J. Mol. Catal. A: Chem., 2015, 409, 198CrossRefGoogle Scholar
  27. [27]
    Ma J. F., Liu Q., Zhu L. F., Zou J., Wang K., Yang M. R., Appl. Catal. B: Environ., 2016, 182, 26CrossRefGoogle Scholar
  28. [28]
    Dong S. Y., Cui Y. R., Wang Y. F., Li Y. K., Hu L. M., Sun J. Y., Sun J. H., Chem. Eng. J., 2014, 249, 102CrossRefGoogle Scholar
  29. [29]
    Ma W. Q., Li Z. L., Liu W., Ceram. Int., 2015, 41(3), 4340CrossRefGoogle Scholar
  30. [30]
    Zeng J., Zhong J. B., Li J. Z., Xiang Z., Liu X. L., Chen J. F., Mater. Sci. Semicond. Proc., 2014, 27(1), 41CrossRefGoogle Scholar
  31. [31]
    Lu Y., Luo Y. S., Kong D. Z., Zhang D. Y., Jia Y. L., Zhang X. W., J. Solid State Chem., 2012, 186(2), 255CrossRefGoogle Scholar
  32. [32]
    Dong S. Y., Yu C. F., Li Y. K., Li Y. H., Sun J. H., Geng X. F., J. Solid State Chem., 2014, 211(5), 176CrossRefGoogle Scholar
  33. [33]
    Dong W. J., Zhu Y. J., Huang H. D., Jiang L. S., Zhu H. J., Li C. R., Chen B. Y., Shi Z., Wang G., J. Mater. Chem. A, 2013, 1(34), 10030CrossRefGoogle Scholar
  34. [34]
    Cao J., Luo B. D., Lin H. L., Xu B. Y., Chen S. F., J. Hazard. Mater., 2012, 217/218(38), 107CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiaojun Zhang
    • 1
  • Keqiang Yan
    • 1
  • Yu Song
    • 1
  • Zhe Wang
    • 1
  • Jialong Wu
    • 1
  • Dayu Yu
    • 1
  1. 1.Sci-Tech Center for Clean Conversion and High-valued Utilization of BiomassNortheast Electric Power UniversityJilinP. R. China

Personalised recommendations