Theoretical Studies on Aromaticity of Spiro Metallaaromatics of (C10H10M)2‒(M=Ni, Pd, Pt)

Article
  • 1 Downloads

Abstract

Aiming to identify the spiro metallaaromatic systems with potential application value, (C10H10M)2‒(M=Ni, Pd, Pt) derivatives were theoretically investigated. (C10H10M)2‒-Iso1, which has two 6-membered rings(6MRs) con-nected by the M spiro atom, is a 14π-aromatic as a whole plane. (C10H10M)2‒-Iso2 has one 6π-aromatic 5MR and one 10π-aromatic 7MR connected by the spiro atom. The free (C10H10M)2‒ dianions could not exist due to their rather high frontier orbital energies, while the neutral (C10H10M)Li2 compounds are extremely stable against dissociation. Since (C10H10M)Li2 coumponds are not fully coordinated, they trend to form (C10H10M)Li42+ dications, or even [(C10H10M)Li2]n polymers. Arguably, (C10H10M)2‒ planes are not the only examples for spiro metallaaromaticity, their derivatives are also potential material building blocks.

Keywords

Metalloaromaticity Metallabenzene Spiro compound Inverse sandwich Through-space NMR shiel-ding(TSNMRS) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Gilbertson R. D., Lau T. L. S., Lanza S., Wu H., Weakley T. J. R., Haley M. M., Organometallics, 2003, 22, 3279CrossRefGoogle Scholar
  2. [2]
    Rickard C. E. F., Roper W. R., Woodgate S. D., Wright L. J., J. Or-ganomet. Chem., 2001, 623, 109CrossRefGoogle Scholar
  3. [3]
    Landorf C. W., Jacob V., Weakley T. J. R., Haley M. M., Organome-tallics, 2004, 23, 1174CrossRefGoogle Scholar
  4. [4]
    Wang T., Zhang H., Han F., Lin R., Lin Z., Xia H., Angew. Chem. Int. Ed., 2012, 51, 9838CrossRefGoogle Scholar
  5. [5]
    Liu B., Zhao Q., Wang H., Chen J., Cao X., Cao Z., Xia H., Chinese J. Chem., 2012, 30, 2158CrossRefGoogle Scholar
  6. [6]
    Clark G. R., Johns P. M., Roper W. R., Söhnel T., Wright L. J., Or-ganometallics, 2011, 30, 129CrossRefGoogle Scholar
  7. [7]
    Fan J., Wang X., Zhu J., Organometallics, 2014, 33, 2336CrossRefGoogle Scholar
  8. [8]
    Wei J., Zhang Y., Chi Y., Liu L., Zhang W., Xi Z., J. Am. Chem. Soc., 2016, 138, 60CrossRefGoogle Scholar
  9. [9]
    Schleyer P. V. R., Wu J. I., Cossio F. P., Fernández I., Chem. Soc. Rev., 2014, 43, 4909CrossRefGoogle Scholar
  10. [10]
    Fernández I., Frenking G., Merino G., Chem. Soc. Rev., 2015, 44, 6452CrossRefGoogle Scholar
  11. [11]
    Lu X., Li Y., Bao W., Liu D., Chinese J. Chem. Phys., 2013, 26(1), 43CrossRefGoogle Scholar
  12. [12]
    Lu X., Wang D., Ming J., Chinese J. Chem. Phys., 2016, 29(2), 193CrossRefGoogle Scholar
  13. [13]
    Wei R. B., Liang Y., Chem. J. Chinese Universities, 2008, 29(2), 309Google Scholar
  14. [14]
    Liang Y., Guo J. J., Wei R. B., Chem. J. Chinese Universities, 2007, 28(9), 1681Google Scholar
  15. [15]
    Liang Y., Guo J., Liu X., Wei R., Chem. Res. Chinese Universities, 2008, 24(4), 441CrossRefGoogle Scholar
  16. [16]
    Rios R., Chem. Soc. Rev., 2012, 41, 1060CrossRefGoogle Scholar
  17. [17]
    Zhang Y., Wei J., Chi Y., Zhang X., Zhang W., Xi Z., J. Am. Chem. Soc., 2017, 139, 5039CrossRefGoogle Scholar
  18. [18]
    Becke A. D., Phys. Rev. A, 1988, 38, 3098CrossRefGoogle Scholar
  19. [19]
    Lee C., Yang W., Parr R. G., Phys. Rev. B, 1988, 37, 785CrossRefGoogle Scholar
  20. [20]
    Perdew J. P., Phys. Rev. B, 1986, 33, 8822CrossRefGoogle Scholar
  21. [21]
    Perdew J. P., Burke K., Ernzerhof M., Phys. Rev. Lett., 1996, 77, 3865CrossRefGoogle Scholar
  22. [22]
    Perdew J. P., Burke K., Ernzerhof M., Phys. Rev. Lett., 1997, 78, 1396CrossRefGoogle Scholar
  23. [23]
    Feller D., J. Comp. Chem., 1996, 17, 1571CrossRefGoogle Scholar
  24. [24]
    Schuchardt K. L, Didier B. T., Elsethagen T., Sun L., Gurumoorthi V., Chase J., Li J., Windus T. L., J. Chem. Inf. Model., 2007, 47, 1045CrossRefGoogle Scholar
  25. [25]
    Kleinpeter E., Klod S., Koch A., J. Mol. Struc.-Theochem., 2007, 811, 45CrossRefGoogle Scholar
  26. [26]
    Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Peters-son G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmay-lov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A. Jr., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staro-verov V. N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jara-millo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dap-prich S., Daniels A. D., Farkas O., Foresman J. B., Ortiz J. V., Cios-lowski J., Fox D. J., Gaussian 09, Revision A.1, Gaussian Inc., Wal-lingford CT, 2009Google Scholar
  27. [27]
    Lu T., Chen F., J. Comp. Chem., 2012, 33, 580CrossRefGoogle Scholar
  28. [28]
    Liu N. N., Ding Y. H., Chinese J. Chem. Phys., 2015, 28(6), 703CrossRefGoogle Scholar
  29. [29]
    Liu N. N., Gao S. M., Ding Y. H., Dalton Trans., 2015, 44, 345CrossRefGoogle Scholar
  30. [30]
    Liu N. N., Ding Y. H., New J. Chem., 2015, 39, 1558CrossRefGoogle Scholar
  31. [31]
    Liu N. N., Yu S., Ding Y. H., Chem. J. Chinese Universities, 2016, 37(11), 2006Google Scholar
  32. [32]
    Liu N., Wang J., Int. J. Quantum. Chem., 2018, 118(8), e25524CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chemistry Center, College of Food EngineeringHarbin University of CommerceHarbinP. R. China
  2. 2.Institute of Theoretical ChemistryJilin UniversityChangchunP. R. China

Personalised recommendations