Synthesis, characterization and photocatalytic application of Ag-doped Fe-ZSM-5@TiO2 nanocomposite for degradation of reactive red 195 (RR 195) in aqueous environment under sunlight irradiation

  • Nasrin Aghajari
  • Zahra GhasemiEmail author
  • Habibollah Younesi
  • Nader Bahramifar
Research Article



Most dyes have aromatic rings in their structures, which make them highly toxic for human being and aquatic life. Heterogeneous photodegradation using TiO2 nanoparticles is one of the most applied methods used for dye removal. The wide band gap of TiO2 nanoparticles disables its use of the visible light and thus the vast potential of sunlight. To overcome this deficiency, Ag doped TiO2 nanoparticles were loaded on Fe-ZSM-5.


Fe-ZSM-5@TiO2-Ag photocatalyst was synthesized through sol-gel and hydrothermal methods to remove hazardous Reactive Red 195 (RR 195) from aqueous solution.


Pure phase of Fe-ZSM-5@TiO2-Ag with specific surface area of 332 m2/g was successfully synthesized. Formation of Ti-O-Ag functional group in the photocatalyst structure confirmed the nanocomposite form of the product. SEM and TEM images portrayed the synthesized zeolite and photocatalyst NPs in a size range of ≤100 nm with homogenous distribution of Ag doped TiO2 on Fe-ZSM-5 surface. The band-gap energy of Fe-ZSM-5@TiO2-Ag was calculated 1.97 eV at λ = 630 nm. Photocatalytic activity of the photocatalyst under natural sunlight was investigated through photodecomposition of RR 195 in an aqueous solution. The dye photodecomposition of about 98% was achieved at photocatalyst concentration of 400 mg/L, pH of 3, and dye concentration of 50 mg/L at ambient temperature after 120 min under sunlight using 0.5 ml of TiO2 and silver ammonium nitrate. The photocatalyst reusability was found significant after 5 frequent cycles.


The novel Ag-doped TiO2-Fe-ZSM-5 nanocomposite with sunlight sensitivity can be a promising candidate to purify wastewater containing organic pollutants.


Sunlight-sensitive nanocomposite Photocatalytic degradation Reactive red (RR 195) 195 Natural sunlight Regeneration 



The study was funded by Tarbiat Modares University (TMU). The authors wish to thank Mrs. Haghdoust for her assistant (Technical Assistant of Environmental Laboratory) and Tarbiat Modares University, Ministry of Science and National Science Foundation for their financial support.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.


  1. 1.
    Hou H, Zhou R, Wu P, Wu L. Removal of Congo red dye from aqueous solution with hydroxyapatite/chitosan composite. Chem Eng J. 2012;211-212:336–42.CrossRefGoogle Scholar
  2. 2.
    Fouladi Fard R, Sar MEK, Fahiminia M, Mirzaei N, Yousefi N, Mansoorian HJ, et al. Efficiency of multi walled carbon nanotubes for removing direct blue 71 from aqueous solutions. Eurasian J Anal Chem. 2018;13.Google Scholar
  3. 3.
    Jirasripongpun K, Nasanit R, Niruntasook J, Chotikasatian B. Decolorization and degradation of CI reactive red 195 by Enterobacter sp. Sci Technol Asia. 2007:6–11.Google Scholar
  4. 4.
    Elwakeel KZ, Rekaby M. Efficient removal of reactive black 5 from aqueous media using glycidyl methacrylate resin modified with tetraethelenepentamine. J Hazard Mater. 2011;188:10–8.CrossRefGoogle Scholar
  5. 5.
    He X, Male KB, Nesterenko PN, Brabazon D, Paull B, Luong JH. Adsorption and desorption of methylene blue on porous carbon monoliths and nanocrystalline cellulose. ACS Appl Mater Interfaces. 2013;5:8796–804.CrossRefGoogle Scholar
  6. 6.
    Dalvand A, Nabizadeh R, Reza Ganjali M, Khoobi M, Nazmara S, Hossein Mahvi A. Modeling of reactive blue 19 azo dye removal from colored textile wastewater using L-arginine-functionalized Fe3O4 nanoparticles: optimization, reusability, kinetic and equilibrium studies. J Magn Magn Mater. 2016;404:179–89.CrossRefGoogle Scholar
  7. 7.
    Ashrafi SD, Kamani H, Soheil Arezomand H, Yousefi N, Mahvi AH. Optimization and modeling of process variables for adsorption of basic blue 41 on NaOH-modified rice husk using response surface methodology. Desalin Water Treat. 2016;57:14051–9.CrossRefGoogle Scholar
  8. 8.
    Kamranifar M, Khodadadi M, Samiei V, Dehdashti B, Noori Sepehr M, Rafati L, et al. Comparison the removal of reactive red 195 dye using powder and ash of barberry stem as a low cost adsorbent from aqueous solutions: isotherm and kinetic study. J Mol Liq. 2018;255:572–7.CrossRefGoogle Scholar
  9. 9.
    Ashrafi SD, Rezaei S, Forootanfar H, Mahvi AH, Faramarzi MA. The enzymatic decolorization and detoxification of synthetic dyes by the laccase from a soil-isolated ascomycete, Paraconiothyrium variabile. Int Biodeterior Biodegrad. 2013;85:173–81.CrossRefGoogle Scholar
  10. 10.
    Kamani H, Safari GH, Asgari G, Ashrafi SD. Data on modeling of enzymatic elimination of direct red 81 using response surface methodology. Data Brief. 2018;18:80–6.CrossRefGoogle Scholar
  11. 11.
    Mehrabian F, Kamani H, Safari GH, Asgari G, Ashrafi SD. Direct blue 71 removal from aqueous solution by laccase-mediated system; a dataset. Data Brief. 2018;19:437–43.CrossRefGoogle Scholar
  12. 12.
    Bali U, Çatalkaya E, Şengül F. Photodegradation of reactive black 5, direct red 28 and direct yellow 12 using UV, UV/H 2 O 2 and UV/H 2 O 2/Fe 2+: a comparative study. J Hazard Mater. 2004;114:159–66.CrossRefGoogle Scholar
  13. 13.
    Alaton IA, Balcioglu IA, Bahnemann DW. Advanced oxidation of a reactive dyebath effluent: comparison of O 3, H 2 O 2/UV-C and TiO 2/UV-A processes. Water Res. 2002;36:1143–54.CrossRefGoogle Scholar
  14. 14.
    X.-H. Qi, Y.-Y. Zhuang, Y.-C. Yuan, W.-X. Gu, Decomposition of aniline in supercritical water. J Hazard Mater, 90 (2002) 51–62.Google Scholar
  15. 15.
    Madhavan J, Maruthamuthu P, Murugesan S, Anandan S. Kinetic studies on visible light-assisted degradation of acid red 88 in presence of metal-ion coupled oxone reagent. Appl Catal B Environ. 2008;83:8–14.CrossRefGoogle Scholar
  16. 16.
    R.A. Al-Rasheed, Water treatment by heterogeneous photocatalysis an overview. In: 4th SWCC acquired experience symposium held in Jeddah, 2005, pp. 1–14.Google Scholar
  17. 17.
    Hemmati Borji S, Nasseri S, Mahvi AH, Nabizadeh R, Javadi AH. Investigation of photocatalytic degradation of phenol by Fe(III)-doped TiO2 and TiO2 nanoparticles. J Environ Health Sci Eng. 2014;12:101.CrossRefGoogle Scholar
  18. 18.
    Safari GH, Hoseini M, Seyedsalehi M, Kamani H, Jaafari J, Mahvi AH. Photocatalytic degradation of tetracycline using nanosized titanium dioxide in aqueous solution. Int J Environ Sci Technol. 2015;12:603–16.CrossRefGoogle Scholar
  19. 19.
    Kaur S, Singh V. TiO 2 mediated photocatalytic degradation studies of reactive red 198 by UV irradiation. J Hazard Mater. 2007;141:230–6.CrossRefGoogle Scholar
  20. 20.
    Soutsas K, Karayannis V, Poulios I, Riga A, Ntampegliotis K, Spiliotis X, et al. Decolorization and degradation of reactive azo dyes via heterogeneous photocatalytic processes. Desalination. 2010;250:345–50.CrossRefGoogle Scholar
  21. 21.
    Poulios I, Tsachpinis I. Photodegradation of the textile dye reactive black 5 in the presence of semiconducting oxides. J Chem Technol Biotechnol. 1999;74:349–57.CrossRefGoogle Scholar
  22. 22.
    Li F, Sun S, Jiang Y, Xia M, Sun M, Xue B. Photodegradation of an azo dye using immobilized nanoparticles of TiO 2 supported by natural porous mineral. J Hazard Mater. 2008;152:1037–44.CrossRefGoogle Scholar
  23. 23.
    Shankar M, Anandan S, Venkatachalam N, Arabindoo B, Murugesan V. Fine route for an efficient removal of 2, 4-dichlorophenoxyacetic acid (2, 4-D) by zeolite-supported TiO 2. Chemosphere. 2006;63:1014–21.CrossRefGoogle Scholar
  24. 24.
    Yoneyama H, Torimoto T. Titanium dioxide/adsorbent hybrid photocatalysts for photodestruction of organic substances of dilute concentrations. Catal Today. 2000;58:133–40.CrossRefGoogle Scholar
  25. 25.
    Matthews RW. Kinetics of photocatalytic oxidation of organic solutes over titanium dioxide. J Catal. 1988;111:264–72.CrossRefGoogle Scholar
  26. 26.
    Seery MK, George R, Floris P, Pillai SC. Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis. J Photochem Photobiol A Chem. 2007;189:258–63.CrossRefGoogle Scholar
  27. 27.
    Fujishima A, Zhang X, Tryk DA. TiO2 photocatalysis and related surface phenomena. Surf Sci Rep. 2008;63:515–82.CrossRefGoogle Scholar
  28. 28.
    Teh CM, Mohamed AR. Roles of titanium dioxide and ion-doped titanium dioxide on photocatalytic degradation of organic pollutants (phenolic compounds and dyes) in aqueous solutions: a review. J Alloys Compd. 2011;509:1648–60.CrossRefGoogle Scholar
  29. 29.
    Yang X, Ma F, Li K, Guo Y, Hu J, Li W, et al. Mixed phase titania nanocomposite codoped with metallic silver and vanadium oxide: new efficient photocatalyst for dye degradation. J Hazard Mater. 2010;175:429–38.CrossRefGoogle Scholar
  30. 30.
    Ghasemi Z, Younesi H, Zinatizadeh AA. Preparation, characterization and photocatalytic application of TiO 2/Fe-ZSM-5 nanocomposite for the treatment of petroleum refinery wastewater: optimization of process parameters by response surface methodology. Chemosphere. 2016;159:552–64.CrossRefGoogle Scholar
  31. 31.
    Ghasemi Z, Younesi H, Zinatizadeh AA. Kinetics and thermodynamics of photocatalytic degradation of organic pollutants in petroleum refinery wastewater over nano-TiO2 supported on Fe-ZSM-5. J Taiwan Inst Chem Eng. 2016;65:357–66.CrossRefGoogle Scholar
  32. 32.
    Yan G, Wang X, Fu X, Li D. A primary study on the photocatalytic properties of HZSM-5 zeolite. Catal Today. 2004;93–95:851–6.CrossRefGoogle Scholar
  33. 33.
    Ohno T, Murakami N, Tsubota T, Nishimura H. Development of metal cation compound-loaded S-doped TiO2 photocatalysts having a rutile phase under visible light. Appl Catal A Gen. 2008;349:70–5.CrossRefGoogle Scholar
  34. 34.
    Huang X, Wang G, Yang M, Guo W, Gao H. Synthesis of polyaniline-modified Fe3O4/SiO2/TiO2 composite microspheres and their photocatalytic application. Mater Lett. 2011;65:2887–90.CrossRefGoogle Scholar
  35. 35.
    M.M. Treacy, J.B. Higgins, Collection of simulated XRD powder patterns for zeolites fifth (5th) revised edition, Elsevier, 2007.Google Scholar
  36. 36.
    Geetha D, Kavitha S, Ramesh P. A novel bio-degradable polymer stabilized ag/TiO 2 nanocomposites and their catalytic activity on reduction of methylene blue under natural sun light. Ecotoxicol Environ Saf. 2015;121:126–34.CrossRefGoogle Scholar
  37. 37.
    Xue C-H, Chen J, Yin W, Jia S-T, Ma J-Z. Superhydrophobic conductive textiles with antibacterial property by coating fibers with silver nanoparticles. Appl Surf Sci. 2012;258:2468–72.CrossRefGoogle Scholar
  38. 38.
    Kumar R, El-Shishtawy R, Barakat M. Synthesis and characterization of ag-Ag2O/TiO2@polypyrrole heterojunction for enhanced photocatalytic degradation of methylene blue. Catalysts. 2016;6:76.CrossRefGoogle Scholar
  39. 39.
    Chong MN, Tneu ZY, Poh PE, Jin B, Aryal R. Synthesis, characterisation and application of TiO2–zeolite nanocomposites for the advanced treatment of industrial dye wastewater. J Taiwan Inst Chem Eng. 2015;50:288–96.CrossRefGoogle Scholar
  40. 40.
    Reporting Physisorption Data for Gas/Solid Systems. In: Handbook of Heterogeneous Catalysis.Google Scholar
  41. 41.
    Sakthivel S, Neppolian B, Shankar MV, Arabindoo B, Palanichamy M, Murugesan V. Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2. Sol Energy Mater Sol Cells. 2003;77:65–82.CrossRefGoogle Scholar
  42. 42.
    Sobana N, Muruganadham M, Swaminathan M. Nano-ag particles doped TiO2 for efficient photodegradation of direct azo dyes. J Mol Catal A Chem. 2006;258:124–32.CrossRefGoogle Scholar
  43. 43.
    Miecznikowski A, Hanuza J. Infrared and Raman studies of ZSM-5 and silicalite-1 at room, liquid nitrogen and helium temperatures. Zeolites. 1987;7:249–54.CrossRefGoogle Scholar
  44. 44.
    Sundaramurthy V, Lingappan N. Isomorphic substitution of boron in ZSM-5 type zeolites using TBP as template. J Mol Catal A Chem. 2000;160:367–75.CrossRefGoogle Scholar
  45. 45.
    Li F, Jiang Y, Yu L, Yang Z, Hou T, Sun S. Surface effect of natural zeolite (clinoptilolite) on the photocatalytic activity of TiO2. Appl Surf Sci. 2005;252:1410–6.CrossRefGoogle Scholar
  46. 46.
    Liu X, Iu K-K, Kerry Thomas J. Encapsulation of TiO2 in zeolite Y. Chem Phys Lett. 1992;195:163–8.CrossRefGoogle Scholar
  47. 47.
    Hansen JØ, Lira E, Galliker P, Wang J-G, Sprunger PT, Li Z, et al. Enhanced bonding of silver nanoparticles on oxidized TiO2(110). J Phys Chem C. 2010;114:16964–72.CrossRefGoogle Scholar
  48. 48.
    Tom RT, Nair AS, Singh N, Aslam M, Nagendra CL, Philip R, et al. Freely dispersible au@TiO2, au@ZrO2, ag@TiO2, and ag@ZrO2 Core−Shell nanoparticles: one-step synthesis, characterization, spectroscopy, and optical limiting properties. Langmuir. 2003;19:3439–45.CrossRefGoogle Scholar
  49. 49.
    Zainudin NF, Abdullah AZ, Mohamed AR. Characteristics of supported nano-TiO 2/ZSM-5/silica gel (SNTZS): photocatalytic degradation of phenol. J Hazard Mater. 2010;174:299–306.CrossRefGoogle Scholar
  50. 50.
    Xie C, Xu Z, Yang Q, Xue B, Du Y, Zhang J. Enhanced photocatalytic activity of titania–silica mixed oxide prepared via basic hydrolyzation. Mater Sci Eng B. 2004;112:34–41.CrossRefGoogle Scholar
  51. 51.
    Rajeshwar K, Osugi ME, Chanmanee W, Chenthamarakshan CR, Zanoni MVB, Kajitvichyanukul P, et al. Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media. J Photochem Photobiol C: Photochem Rev. 2008;9:171–92.CrossRefGoogle Scholar
  52. 52.
    Hoffmann MR, Martin ST, Choi W, Bahnemann DW. Environmental applications of semiconductor Photocatalysis. Chem Rev. 1995;95:69–96.CrossRefGoogle Scholar
  53. 53.
    Moradi N, Amin MM, Fatehizadeh A, Ghasemi Z. Degradation of UV-filter Benzophenon-3 in aqueous solution using TiO2 coated on quartz tubes. J Environ Health Sci Eng. 2018;16:213–28.CrossRefGoogle Scholar
  54. 54.
    Sahel K, Perol N, Chermette H, Bordes C, Derriche Z, Guillard C. Photocatalytic decolorization of Remazol black 5 (RB5) and Procion red MX-5B—isotherm of adsorption, kinetic of decolorization and mineralization. Appl Catal B Environ. 2007;77:100–9.CrossRefGoogle Scholar
  55. 55.
    Ashrafi SD, Kamani H, Mahvi AH. The optimization study of direct red 81 and methylene blue adsorption on NaOH-modified rice husk. Desalin Water Treat. 2016;57:738–46.CrossRefGoogle Scholar
  56. 56.
    Konstantinou IK, Albanis TA. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl Catal B Environ. 2004;49:1–14.CrossRefGoogle Scholar
  57. 57.
    Barakat MA. Adsorption and photodegradation of Procion yellow H-EXL dye in textile wastewater over TiO2 suspension. J Hydro Environ Res. 2011;5:137–42.CrossRefGoogle Scholar
  58. 58.
    Behnajady M, Modirshahla N, Hamzavi R. Kinetic study on photocatalytic degradation of CI acid yellow 23 by ZnO photocatalyst. J Hazard Mater. 2006;133:226–32.CrossRefGoogle Scholar
  59. 59.
    Kamani H, Bazrafshan E, Ashrafi SD, Sancholi F. Efficiency of Sono-nano-catalytic process of Tio2 Nano-particle in removal of erythromycin and metronidazole from aqueous solution. Journal of Mazandaran University of Medical. Sciences. 2017;27:140–54.Google Scholar
  60. 60.
    Kalhor MM, Rafati AA, Rafati L, Rafati AA. Synthesis, characterization and adsorption studies of amino functionalized silica nano hollow sphere as an efficient adsorbent for removal of imidacloprid pesticide. J Mol Liq. 2018;266:453–9.CrossRefGoogle Scholar
  61. 61.
    Sauer T, Cesconeto Neto G, José HJ, Moreira RFPM. Kinetics of photocatalytic degradation of reactive dyes in a TiO2 slurry reactor. J Photochem Photobiol A Chem. 2002;149:147–54.CrossRefGoogle Scholar
  62. 62.
    Wu C-H. Comparison of azo dye degradation efficiency using UV/single semiconductor and UV/coupled semiconductor systems. Chemosphere. 2004;57:601–8.CrossRefGoogle Scholar
  63. 63.
    Daneshvar N, Rabbani M, Modirshahla N, Behnajady MA. Kinetic modeling of photocatalytic degradation of acid red 27 in UV/TiO2 process. J Photochem Photobiol A Chem. 2004;168:39–45.CrossRefGoogle Scholar
  64. 64.
    Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B Environ. 2012;125:331–49.CrossRefGoogle Scholar
  65. 65.
    Yurdakal S, Tek BS, Değirmenci Ç, Palmisano G. Selective photocatalytic oxidation of aromatic alcohols in solar-irradiated aqueous suspensions of Pt, au, Pd and ag loaded TiO2 catalysts. Catal Today. 2017;281:53–9.CrossRefGoogle Scholar
  66. 66.
    Damm C, Herrmann R, Israel G, Müller FW. Acrylate photopolymerization on heterostructured TiO2 photocatalysts. Dyes Pigments. 2007;74:335–42.CrossRefGoogle Scholar
  67. 67.
    Geetha D, Kavitha S, Ramesh PS. A novel bio-degradable polymer stabilized ag/TiO2 nanocomposites and their catalytic activity on reduction of methylene blue under natural sun light. Ecotoxicol Environ Saf. 2015;121:126–34.CrossRefGoogle Scholar
  68. 68.
    Ajmal A, Majeed I, Malik RN, Idriss H, Nadeem MA. Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: a comparative overview. RSC Adv. 2014;4:37003–26.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nasrin Aghajari
    • 1
  • Zahra Ghasemi
    • 2
    Email author
  • Habibollah Younesi
    • 1
  • Nader Bahramifar
    • 1
  1. 1.Department of Environmental Science, Faculty of Natural ResourcesTarbiat Modares UniversityNoorIran
  2. 2.Department of Fisheries, Faculty of Marine Science and TechnologyUniversity of HormozganBandar AbbasIran

Personalised recommendations