Removal of hexavalent chromium from water using polyaniline/ wood sawdust/ poly ethylene glycol composite: an experimental study

  • Majid Riahi Samani
  • Davood ToghraieEmail author
Research Article


Polyaniline/ Sawdust /Poly Ethylene Glycol/ (PANi/SD/PEG) composite synthesized chemically is used as an adsorbent to remove hexavalent chromium from water. Adsorption experiments have been done in batch and continuous (column) mode. Some parameter such as pH, contact time, PANi/SD/PEG dose, isotherms in batch mode and pH, column bed depth and fluid flow rate in column mode were investigated. Result shows that PANi/SD/PEG has a good performance to remove hexavalent chromium ion from aqueous media. By presence of PEG, prepared composite has been homogenized and further absorption has been occurred. The best adsorption occurs under pH 2 and optimum contact time for removal of hexavalent chromium ion in batch experiment was about 30 min. Adsorption of Cr (VI) by PANi/SD/PEG fitted well in Langmuir isotherms. Maximum adsorption of hexavalent chromium was calculated 3.2 (mg/g). In column experiments, pH and column bed depth were found to be more prominent than fluid flow rate. Though, about 22% of Cr (VI) can be recovered using 0.1 M NaOH in the batch system, the recovered Cr (VI) in column system was less than 7.9%.


Chromium Adsorption Polyaniline Composite Wood sawdust 


Compliance with ethical standards

Conflict of interest

There is not any conflict of interest in this manuscript.


  1. 1.
    Papaevangelou VA, Gikas GD, Tsihrintzis VA. Chromium removal from waste water using HSF and VF pilot-scale constructed wetlands: Overall performance, and fate and distribution of this element within the wetland environment. Chemosphere. 2017;168:716–30.CrossRefGoogle Scholar
  2. 2.
    Hamilton EM, Young SD, Bailey EH, Watts MLJ. Chromium speciation in foodstuffs: A review. Food Chem. 2018;250:105–12.CrossRefGoogle Scholar
  3. 3.
    Shahid M, Shamshad S, Rafiq M, Khalid S, Rashid MI. Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review. Chemosphere. 2017;178:513–33.CrossRefGoogle Scholar
  4. 4.
    Jobby R, Jha P, Kumar Yadav A, Desai N. Biosorption and biotransformation of hexavalent chromium [Cr (VI)]: A comprehensive review. Chemosphere. 2018;207:255–66.CrossRefGoogle Scholar
  5. 5.
    Chen Z, Deng H, Chen C, Yang Y, Xu H. Biosorption of malachite green from aqueous solutions by Pleurotus ostreatus using Taguchi method. J Environ Health Sci Eng. 2014;12:1–10.CrossRefGoogle Scholar
  6. 6.
    Ashrafi SD, Kamani H, Arezomand HS, Yousefi N, Mahvi AH. Optimization and modeling of process variables for adsorption of Basic Blue 41 on NaOH-modified rice husk using response surface methodology. Desal Wat Treat. 2016;57:14051–9.CrossRefGoogle Scholar
  7. 7.
    Lyu H, Tang J, Huang Y, Gai L, Zeng EY, Liber K, et al. Removal of hexavalent chromium from aqueous solutions by a novel biochar supported nanoscale iron sulfide composite. Chem Eng J. 2017;322:516–24.CrossRefGoogle Scholar
  8. 8.
    Huang D, Wang G, Shi Z, Li Z, Kang F, Liu F. Removal of hexavalent chromium in natural groundwater using activated carbon and cast iron combined system. J Clean Prod. 2017;165:667–76.CrossRefGoogle Scholar
  9. 9.
    Lv X, Xu J, Jiang G, Xu X. Removal of chromium(VI) from wastewater by nanoscale zero-valent iron particles supported on multiwalled carbon nanotubes. Chemosphere. 2011;85:1204–9.CrossRefGoogle Scholar
  10. 10.
    Chen L, Chen Z, Chen D, Xiong W. Removal of hexavalent chromium from contaminated waters by ultrasound-assisted aqueous solution ball milling. J Environ Sci. 2017;52:276–83.CrossRefGoogle Scholar
  11. 11.
    Mamais D, Noutsopoulos C, Kavallari I, Nyktari E, Kaldis A, Panousi E, et al. Biological groundwater treatment for chromium removal at low hexavalent chromium concentrations. Chemosph. 2016;152:238–44.CrossRefGoogle Scholar
  12. 12.
    Gaikwad MS, Balomajumder C. Simultaneous electrosorptive removal of chromium(VI) and fluoride ions by capacitive deionization (CDI): Multicomponent isotherm modeling and kinetic study. Sep Purif Technol. 2017;186:272–81.CrossRefGoogle Scholar
  13. 13.
    Fu R, Yang Y, Xu Z, Zhang X, Guo X, Bi D. The removal of chromium (VI) and lead (II) from groundwater using sepiolite-supported nanoscale zero-valent iron (S-NZVI). Chemosphere. 2015;138:726–34.CrossRefGoogle Scholar
  14. 14.
    Hosseini SS, Nazif A, Shahmirzadi MAA, Ortiz I. Fabrication, tuning and optimization of poly (acrilonitryle) nanofiltration membranes for effective nickel and chromium removal from electroplating wastewater. Sep Purif Technol. 2017;187:46–59.CrossRefGoogle Scholar
  15. 15.
    Geng B, Jin Z, Li T, Qi X. Kinetics of, hexavalent chromium removal from water by chitosan-Fe0 nanoparticles. Chemosph. 2009;75:825–30.CrossRefGoogle Scholar
  16. 16.
    Asiabi H, Yamini Y, Shamsayei M. Highly selective and efficient removal of arsenic (V), chromium (VI) and selenium (VI) oxyanions by layered double hydroxide intercalated with zwitterionic glycine. J Hazard Mater. 2017;339:239–47.CrossRefGoogle Scholar
  17. 17.
    Zhou H, He Y, Lan Y, Mao J, Chen S. Influence of complex reagents on removal of chromium(VI) by zero-valent iron. Chemosphere. 2008;72:870–4.CrossRefGoogle Scholar
  18. 18.
    Ahmadian M, Yosefi N, Toolabi A, Khanjani N, Rahimi-Keshari S, Fatehizadeh A. Adsorption of direct yellow 9 and acid orange 7 from aqueous solutions by modified pumice. Asia J Chemis. 2012;24:3094.Google Scholar
  19. 19.
    Pourfadakari S, Yousefi N, Mahvi A. Removal of Reactive Red 198 from aqueous solution by combined method multi-walled carbon nanotubes and zero-valent iron: Equilibrium, kinetics, and thermodynamic. Chin J Chem Eng. 2016;24:1448–55.CrossRefGoogle Scholar
  20. 20.
    Kalhor MM, Rafati AA, Rafati L, Rafati AA. Synthesis, characterization and adsorption studies of amino functionalized silica nano hollow sphere as an efficient adsorbent for removal of imidacloprid pesticide. J Mol Liq. 2018;266:453–9.CrossRefGoogle Scholar
  21. 21.
    Kamranifar M, Khodadadi M, Samiei V, Dehdashti B, Noori Sepehr M, Rafati L, et al. Comparison the removal of reactive red 195 dye using powder and ash of barberry stem as a low cost adsorbent from aqueous solutions: Isotherm and kinetic study. J Mol Liq. 2018;255:572–7.CrossRefGoogle Scholar
  22. 22.
    Rafati L, Ehrampoush MH, Rafati AA, Mokhtari M, Mahvi AH. Removal of ibuprofen from aqueous solution by functionalized strong nano-clay composite adsorbent: kinetic and equilibrium isotherm studies. Int J Environ Sci Technol. 2018;15:513–24.CrossRefGoogle Scholar
  23. 23.
    Rafati L, Ehrampoush MH, Rafati AA, Mokhtari M, Mahvi AH. Modeling of adsorption kinetic and equilibrium isotherms of naproxen onto functionalized nano-clay composite adsorbent. J Mol Liq. 2016;224:832–41.CrossRefGoogle Scholar
  24. 24.
    Rafati L, Nabizadeh R, Mahvi AH, Dehghani MH. Removal of phosphate from aqueous solutions by iron nano-particle resin Lewatit (FO36). Kore J Chemic Eng. 2012;29:473–7.CrossRefGoogle Scholar
  25. 25.
    Rafati L, Mahvi AH, Asgari AR, Hosseini SS. Removal of chromium (VI) from aqueous solutions using lewatit fo36 nano ion exchange resin, inter. J Environ Sci Technol. 2010;7:147–56.Google Scholar
  26. 26.
    Sakulthaew C, Chokejaroenrat C, Poapolathep A, Satapanajaru T, Poapolathep S. Hexavalent chromium adsorption from aqueous solution using carbon nano-onions (CNOs). Chemosphere. 2017;184:1168–74.CrossRefGoogle Scholar
  27. 27.
    Bhatti IA, A N, Iqbal N, Zahid M, Iqbal M. Chromium adsorption using waste tire and conditions optimization by response surface methodology. J Environ Chemic Eng. 2017;5:2740–51.CrossRefGoogle Scholar
  28. 28.
    Lee C, Lee S, Park JA, Park C, Lee SJ, Kim S, et al. Removal of copper, nickel and chromium mixtures from metal plating wastewater by adsorption with modified carbon foam. Chemosphere. 2017;166:203–11.CrossRefGoogle Scholar
  29. 29.
    Xiao Z, Zhang H, Xu Y, Yuan M, Jing X, Huang J, et al. Ultra-efficient removal of chromium from aqueous medium by biogenic iron based nanoparticles. Sep Purif Technol. 2017;174:466–73.CrossRefGoogle Scholar
  30. 30.
    Dima JB, Cynthia S, Zaritzky NE. Hexavalent chromium removal in contaminated water using reticulated chitosan micro/nanoparticles from seafood processing wastes. Chemosph. 2015;141:100–11.CrossRefGoogle Scholar
  31. 31.
    Mohamed A, Nasser WS, Osman TA, Toprak MS, Muhammed M, Uheida A. Removal of chromium (VI) from aqueous solutions using surface modified composite nanofibers. J Colloid Interface Sci. 2017;505:682–91.CrossRefGoogle Scholar
  32. 32.
    Park D, Lim S, Yun Y, Park JM. Reliable evidences that the removal mechanism of hexavalent chromium by natural biomaterials is adsorption-coupled reduction. Chemosph. 2007;70:298–305.CrossRefGoogle Scholar
  33. 33.
    Babel S, Kurniawan TA. Cr(VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan. Chemos. 2004;54:951–67.CrossRefGoogle Scholar
  34. 34.
    Gupta VK, Morhan D, Sharma S, Park KT. Removal of chromium from electroplating industry wastewater using bagasse fly ash-a sugar industry waste materials. Environmentalist. 1999;19:129–36.CrossRefGoogle Scholar
  35. 35.
    Srivastava K, Balasubramanian N, Ramakhrisna TV. Studies on chromium removal by rice busk carbon. Ind J Environ Healt. 1998;30:376–87.Google Scholar
  36. 36.
    Selvarg K, Chandramohan V, PattebhiI S. Removal of hexavalent chromium using distillery sludge. Bioresour Technol. 1997;89:207–11.CrossRefGoogle Scholar
  37. 37.
    Amalraj A, Selvi MK, Rajeswari A, Christy EJS. A. Pius, Efficient removal of toxic hexavalent chromium from aqueous solution using threonine doped polypyrrole nanocomposite. J Wat Proc Engin. 2016;13:88–99.CrossRefGoogle Scholar
  38. 38.
    Bhaumik M, Setshedi K, Maity A, Onyango MS. Chromium(VI) removal from water using fixed bed column of polypyrrole/Fe3O4 nanocomposite. Sep Purif Technol. 2013;110:11–9.CrossRefGoogle Scholar
  39. 39.
    Baig U, Rao RAK, Khan AA, Sanagi MM, Gonda MA. Removal of carcinogenic hexavalent chromium from aqueous solutions using newly synthesized and characterized polypyrrole–titanium(IV)phosphate nanocomposite. Chem Eng J. 2015;280:494–504.CrossRefGoogle Scholar
  40. 40.
    Ballav N, Maity A, Mishra SB. High efficient removal of chromium(VI) using glycine doped polypyrrole adsorbent from aqueous solution. Chem Eng J. 2012;198–199:536–46.CrossRefGoogle Scholar
  41. 41.
    Bhaumik M, Maity A, Srinivasu VV, Onyango MS. Removal of hexavalent chromium from aqueous solution using polypyrrole-polyaniline nanofibers. Chem Eng J. 2012;181–182:323–33.CrossRefGoogle Scholar
  42. 42.
    Shabani-Nooshabadi M, Zahedi F. Electrochemical reduced graphene oxide-polyaniline as effective nanocomposite film for high-performance supercapacitor applications. Electrochimi Act. 2017;245:575–86.CrossRefGoogle Scholar
  43. 43.
    Jasim A, Ullah MW, Shi Z, Lin X, Yang G. Fabrication of bacterial cellulose/polyaniline/single-walled carbon nanotubes membrane for potential application as biosensor. Carbohydr Polym. 2017;163:62–9.CrossRefGoogle Scholar
  44. 44.
    Farias EAO, Santos MC, Dionísio NA, Quelemes PV, Leite JRSA, Eaton P, et al. Layer-by-Layer films based on biopolymers extracted from red seaweeds and polyaniline for applications in electrochemical sensors of chromium VI. Mater Sci Eng B. 2015;200:9–21.CrossRefGoogle Scholar
  45. 45.
    Patil BH, Jang K, Lee S, Kim JH, Yoon CS, Kim J, et al. Periodically ordered inverse opal TiO2/polyaniline core/shell design for electrochemical energy storage applications. J Alloys Compd. 2017;694:111–8.CrossRefGoogle Scholar
  46. 46.
    Liu M, He S, Fan W, Miao Y, Liu T. Filter paper-derived carbon fiber/polyaniline composite paper for high energy storage applications. Compos Sci Technol. 2014;101:152–8.CrossRefGoogle Scholar
  47. 47.
    Stejskal J, Hajná M, Kašpárková V, Humpolíček P, Zhigunov A, Trchová M. Purification of a conducting polymer, polyaniline, for biomedical applications. Synth Met. 2014;195:286–93.CrossRefGoogle Scholar
  48. 48.
    X H, Zhang J, Chen Y, Lu H, Zhuang J, Li J. Synthesis of polyaniline-modified MnO2 composite nanorods and their. Mater Lett. 2014;117:21–3.CrossRefGoogle Scholar
  49. 49.
    Yang C, Li H, Xiong D, Cao Z. Hollow polyaniline/Fe3O4 microsphere composites: Preparation, Characterization and application in microwave absorption. React Funct Polym. 2009;69:137–44.CrossRefGoogle Scholar
  50. 50.
    Samani MR, Borghei SM, Olad A, Chaichi MJ. Adsorption of chromium from aqueous solution using polyaniline. Wat Wastewat. 2011;379:2–9.Google Scholar
  51. 51.
    Samani MR, Borghei SM, Olad A, Chaichi MJ. Removal of Chromium from Aqueous Solution Using Two Kinds of Polyaniline. J Env Stud. 2010;55:25.Google Scholar
  52. 52.
    Eisazadeh H, Samani MR. Chromium removal from Chromium-plating industry waste water using conductive polymers. IranPolym J. 2006;19:137–41.Google Scholar
  53. 53.
    Farrell ST, Breslin CB. Reduction of Cr (VI) at a polyaniline film: influence of film thickness and oxidation state. Environ Sci Technol. 2004;38:4671–6.CrossRefGoogle Scholar
  54. 54.
    Ruotolo LAM, Gubulin JC. Chromium (VI) reduction using conducting polymer films. React Funct Polym. 2005;62:141–51.CrossRefGoogle Scholar
  55. 55.
    Olad A, Nabavi R. Application of polyaniline for the reduction of toxic Cr(VI) in water. J Hazard Mater. 2007;147:845–51.CrossRefGoogle Scholar
  56. 56.
    Samani MR, Borghei SM. Removal of Chromium from Aqueous Solution using Synthesized Polyaniline in Acetonitrile. World Acad Sci Eng Technol. 2012;68:1282–5.Google Scholar
  57. 57.
    Samani MR, Borghei SM, Olad A, Chaichi MJ. Influence of Polyaniline Synthesis Conditions on its Capability for Removal and Recovery of Chromium from Aqueous Solution. Iran J Chem Chemic Eng (IJCCE). 2011;30:97–100.Google Scholar
  58. 58.
    Rafiqi FA, Majid K. Removal of copper from aqueous solution using polyaniline and polyaniline/ferricyanide composite. J Env Chem Eng. 2015;3:2492–501.CrossRefGoogle Scholar
  59. 59.
    Liu Y, Chen L, Li Y, Wang P, Dong Y. Synthesis of magnetic polyaniline/graphene oxide composites and their application in the efficient removal of Cu(II) from aqueous solutions. J Env Chem Eng. 2016;4:825–34.CrossRefGoogle Scholar
  60. 60.
    Karthik R, Meenakshi S. Removal of hexavalent chromium ions using polyaniline/silica gel composite. J Wat Proc Eng. 2014;1:37–45.CrossRefGoogle Scholar
  61. 61.
    Roghani M, Nakhli SA, Aghajani M, Rostami MH, Borghei SM. Adsorption and oxidation study on arsenite removal from aqueous solutions by polyaniline/polyvinyl alcohol composite. J W Proc Eng. 2016;14:101–7.CrossRefGoogle Scholar
  62. 62.
    Samani MR, Ebrahimbabaie P, Molamahmood HV. Hexavalent chromium removal by using synthesis of polyaniline and polyvinyl alcohol. Water Sci Technol. 2016;74:2305–13.CrossRefGoogle Scholar
  63. 63.
    Gupta RK, Singh RA, Dubey SS. Removal of mercury ions from aqueous solutions by composite fo polyaniline with polystyrene. Sep Purif Technol. 2004;38:225–32.CrossRefGoogle Scholar
  64. 64.
    Davodi B, Jahangiri M. Determination of optimum conditions for removal of As (III) and As(V) by polyaniline/polystyrene nanocomposite. Synth Met. 2014;194:97–101.CrossRefGoogle Scholar
  65. 65.
    Samani MR, Borghei SM, Olad A, Chaichi MJ. Removal of chromium from aqueous solution using polyaniline–poly ethylene glycol composite. J Hazard Mater. 2010;184:248–54.CrossRefGoogle Scholar
  66. 66.
    Qiua B, Xu C, Sun D, Wangb Q, Gua H, Brandon XZ, et al. Polyaniline coating with various substrates for hexavalent chromium removal. Appl Surf Sci. 2015;334:7–14.CrossRefGoogle Scholar
  67. 67.
    Kumar PA, Chakraborty S, Ray M. Removal and recovery of chromium from wastewater using short chain polyaniline synthesized on jute fiber. Chem Eng J. 2008;141:130–40.CrossRefGoogle Scholar
  68. 68.
    Harijan DKL, Chandra V. Polyaniline functionalized Graphene sheets for treatment of toxic hexavalent chromium. J Env Chem Eng. 2016;4:3006–12.CrossRefGoogle Scholar
  69. 69.
    Qomia MH, Eisazadeh H, Hosseinid M, Namaghia HA. Manganese removal from aqueous media using polyaniline nanocomposite coated on wood sawdust. Synth Met. 2014;194:153–9.CrossRefGoogle Scholar
  70. 70.
    Eisazadeh A, Eisazadeh H, Kassim KA. Removal of Pb (II) using polyaniline composites and iron oxide coated natural sand and clay from aqueous solution. Synth Met. 2013;171:56–61.CrossRefGoogle Scholar
  71. 71.
    Ren J, Huang X, Wang N, Lu K, Zhang X, Li W, et al. Preparation of polyaniline-coated polyacrylonitrile fiber mats and their application to Cr(VI) removal. Synth Met. 2016;222:255–66.CrossRefGoogle Scholar
  72. 72.
    Karthik R, Meenakshi S. Removal of Pb(II) and Cd(II) ions from aqueous solution using polyaniline grafted chitosan. Chem Eng J. 2015;263:168–77.CrossRefGoogle Scholar
  73. 73.
    Ansari R. Application of polyaniline and its composites for adsorption /recovery of chromium (VI) from aqueous solutions. Act Chem Solv. 2006;53:88–94.Google Scholar
  74. 74.
    Ansari R, Raofie F. Removal of lead ion from aqueous solutions using sawdust coated by polyaniline. E J Chem. 2006;3:49–59.CrossRefGoogle Scholar
  75. 75.
    Ansari R, Raofie F. Removal of mercuric ion from aqueous solutions using sawdust coated by polyaniline. E J Chem. 2006;3:35–43.CrossRefGoogle Scholar
  76. 76.
    Esfe MH, Saedodin S, Bahiraei M, Toghraie D, Mahian O, Wongwises S. Thermal conductivity modeling of MgO/EG nanofluids using experimental data and artificial neural network. J Therm Anal Calorim. 2014;118:287–94.CrossRefGoogle Scholar
  77. 77.
    Zarringhalam M, Karimipour A, Toghraie D. Experimental study of the effect of solid volume fraction and Reynolds number on heat transfer coefficient and pressure drop of CuO–Water nanofluid. Exp Thermal Fluid Sci. 2016;76:342–51.CrossRefGoogle Scholar
  78. 78.
    Esfe MH, Akbari M, Semiromi DT, Karimiopour A, Afrand M. Effect of nanofluid variable properties on mixed convection flow and heat transfer in an inclined two-sided lid-driven cavity with sinusoidal heating on sidewalls. Heat Transfer Res. 2014;45:409–32.CrossRefGoogle Scholar
  79. 79.
    Afrand M, Toghraie D, Ruhani B. Effects of temperature and nanoparticles concentration on rheological behavior of Fe3O4–Ag/EG hybrid nanofluid: an experimental study. Exp Thermal Fluid Sci. 2016;77:2016.CrossRefGoogle Scholar
  80. 80.
    Hemmat Esfe M, Yan WM, Afrand M, Sarraf M, Toghraie D, Dahari M. Estimation of thermal conductivity of Al2 O3 /Water (40%)–ethylene-glycol (60%) by artificial neural network and correlation using experimental data. Int Commun Heat Mass Transf. 2016;74:125–8.CrossRefGoogle Scholar
  81. 81.
    Toghraie D, Chaharsoghi VA, Afrand M. Measurement of thermal conductivity of ZnO–TiO2/EG hybrid nanofluid. J Therm Anal Calorim. 2016:1–9.
  82. 82.
    Toghraie D, Alempour SMB, Afrand M. Experimental determination of viscosity of Water based magnetite nanofluid for application in heating and cooling systems. J Magn Magn Mater. 2016;417:243–8.CrossRefGoogle Scholar
  83. 83.
    Hemmat EM, Saedodin S, Wongwises S, Toghraie D. An experimental study on the effect of diameter on thermal conductivity and dynamic viscosity of Fe/Water nanofluids. Therm Anal.
  84. 84.
    Hemmat Esfe M, Afrand M, Gharehkhani S, Rostamiand H, Toghraie D, Dahari M. An experimental study on viscosity of alumina-engine oil: Effects of temperature and nanoparticles concentration. Int Commun Heat Mass Transf. 2016;76:202–8.CrossRefGoogle Scholar
  85. 85.
    Hemmat Esfe M, Afrand M, Yan WM, Yarmand H, Toghraie D, Dahari M. Effects of temperature and concentration on rheological behavior of MWCNTs/ SiO2 (20–80)-SAE40 hybrid nano-lubricant. Int Commun Heat Mass Transf. 2016;76:133–8.CrossRefGoogle Scholar
  86. 86.
    Hemmat Esfe M, Ahangar H, Rejvani M, Toghraie D, Hajmohammad MH. Designing an artificial neural network to predict dynamic viscosity of aqueous nanofluid of TiO2 using experimental data. Int Commun Heat Mass Transf. 2016;75:192–6.CrossRefGoogle Scholar
  87. 87.
    Afrand M, Toghraie D, Sina N. Experimental study on thermal conductivity of Water-based Fe3O4 nanofluid: Development of a new correlation and modeled by artificial neural network. Int Commun Heat Mass Transf. 2016;75:262–9.CrossRefGoogle Scholar
  88. 88.
    Esfe MH, Afrand M, Rostamian SH, Toghraie D. Examination of rheological behavior of MWCNTs/ZnO-SAE40 hybrid nano-lubricants under various temperatures and solid volume fractions. Exp Thermal Fluid Sci. 2017;80:384–90.CrossRefGoogle Scholar
  89. 89.
    Esfe MH, Rostamian H, Toghraie D, Yan WM. Using artificial neural network to predict thermal conductivity of ethylene glycol with alumina nanoparticle. J Therm Anal Calorim. 2016;126(2):643–8.CrossRefGoogle Scholar
  90. 90.
    Zadkhast M, Toghraie D, Karimipour A. Developing a new correlation to estimate the thermal conductivity of MWCNT-CuO/water hybrid nanofluid via an experimental investigation. J Therm Anal Calorim. 2017;129:859–67.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of civil Engineering, Khomeinishahr BranchIslamic Azad UniversityKhomeinishahrIran
  2. 2.Department of Mechanical Engineering, Khomeinishahr BranchIslamic Azad UniversityKhomeinishahrIran

Personalised recommendations