Advertisement

DARU Journal of Pharmaceutical Sciences

, Volume 27, Issue 1, pp 307–315 | Cite as

N-doped carbon nanodots@UiO-66-NH2 as novel nanoparticles for releasing of the bioactive drug, rosmarinic acid and fluorescence imaging

  • Khalil TabatabaeianEmail author
  • Masoomeh Simayee
  • Abdollah Fallah-Shojaie
  • Farhad Mashayekhi
Research article
  • 42 Downloads

Abstract

Background and the purpose of the study

The purpose of the present research was to synthesize affordable nanoparticles for simultaneous drug release and cell fluorescence imaging to decrease the costs associated with conventional treatments.

Methods

In the present study, N-doped carbon nanodots@UiO-66-NH2 nanoparticles were simply synthesized in few steps and were used as a novel carrier for rosmarinic acid (RA). Nano particles were characterized by FT-IR spectroscopy, X-ray powder diffraction (XRD), Dynamic Light Scattering (DLS) and field emission scanning electron microscopy (FE-SEM). UV/vis spectroscopy was used to study the release profile of RA drug from this novel carrier. Methylthiazolyl tetrazolium (MTT) assay was to evaluate the effect of irradiation with a (UV) lamp. Confocal laser scanning microscopy was used for fluorescence imaging of cancer cells.

Results

Results of the MTT assay revealed that UiO-66-NH2@N-CNDs nanoparticles as a drug carrier for RA, have an excellent therapeutic effect due to their high quantum yield under irradiation of UV light. On the contrary, the observed therapeutic effect was decreased under ambient light.

Conclusions

UiO-66-NH2@N-CNDs nanoparticles can be considered as promising vehicles for drug delivery due to their cost effectiveness in cancer treatment, based on the results of MTT assay. It should be emphasized that this nanocarrier can be as potential platforms for coincident drug delivery system and cell fluorescence imaging due to possessing green fluorescence and microporosity features.

Graphical abstract

Graphical abstract

Keywords

UiO-66-NH2 Rosmarinic acid N-doped carbon nanodot Drug delivery Therapeutic effect 

Notes

Acknowledgements

We gratefully acknowledge to the Research Council University of Guilan for the partial support of this study.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Supplementary material

40199_2019_276_MOESM1_ESM.docx (299 kb)
ESM 1 (DOCX 298 kb)

References

  1. 1.
    Harborne JB. Caffeic acid ester distribution in higher plants. Z Naturforsch. 1966;21b:604–5.CrossRefGoogle Scholar
  2. 2.
    Litvinenko VI, Popova TP, Simonjon AV, Zoz IG, Sokolov VS. Gerbstoffe und oxyzimstaureabkommlinge in Labiaten. Planta Med. 1975;27:372–80.CrossRefGoogle Scholar
  3. 3.
    Yang R, Shetty K. Stimulation of rosmarinic acid in shoot cultures of oregano (Origanum vulgare) clonal line in response to proline, proline analogue, and proline precursors. J Agr Food Chem. 1998;46(7):2888–93.CrossRefGoogle Scholar
  4. 4.
    Al-Sereiti MR, Abu-Amer KM, Sen P. Pharmacology of rosemary (Rosmarinus officinalis Linn.) and its therapeutic potentials. Indian J Exp Biol. 1999;37:124–30.Google Scholar
  5. 5.
    Inatani R, Nakatani N, Fuwa H. Antioxidative effect of constituents of rosemary (Rosmarinus officinalis L.) and their derivatives. Agr Biol Chem. 1983;47:521–8.Google Scholar
  6. 6.
    Zhu BT, Loder DP, Cai MX, Ho CT, Huang MT, Conney AH. Dietary administration of an extract from rosemary leaves enhances the liver microsomal metabolism of endogenous estrogens and decreases their uterotropic action in CD-1 mice. Carcinogenesis. 1998;19(10):1821–7.CrossRefGoogle Scholar
  7. 7.
    Kim HK, Lee HK, Shin CG, Huh H. HIV: integrase inhibitory activity of agastache rugosa. Arch Pharm Research. 1999;22(5):520–3.CrossRefGoogle Scholar
  8. 8.
    Makino T, Ono T, Muso E, Yoshida H, Honda G, Sasayama S. Inhibitory effects of rosmarinic acid on the proliferation of cultured murine mesangial cells. Nephrol Dial Transplant. 2000;15:1140–5.CrossRefGoogle Scholar
  9. 9.
    Kelm MA, Nair MG, Strasburg GM, De Witt DL. Antioxidant and cyclooxygenase inhibitory phenolic compounds from ocimum sanctum Linn. Phytomedicine. 2000;7(1):7–13.CrossRefGoogle Scholar
  10. 10.
    Casanova F, Estevinho BN, Santos L. Preliminary studies of rosmarinic acid microencapsulation with chitosan and modified chitosan for topical delivery. Powder Technol. 2016;297:44–9.CrossRefGoogle Scholar
  11. 11.
    Davis ME. Ordered porous materials for emerging applications. Nature. 2002;417(6891):813–21.CrossRefGoogle Scholar
  12. 12.
    Li JR, Sculley J, Zhou HC. Metal–organic frameworks for separations. Chem Rev. 2011;112(2):869–932.CrossRefGoogle Scholar
  13. 13.
    Lee J, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT. Metal–organic framework materials as catalysts. Chem Soc Rev. 2009;38(5):1450–9.CrossRefGoogle Scholar
  14. 14.
    Ma S, Zhou HC. Gas storage in porous metal–organic frameworks for clean energy applications. Chem Comm. 2010;46(1):44–53.CrossRefGoogle Scholar
  15. 15.
    Mason JA, Veenstra M, Long JR. Evaluating metal–organic frameworks for natural gas storage. Chem Sci. 2014;5(1):32–51.CrossRefGoogle Scholar
  16. 16.
    Evans OR, Lin W. Crystal engineering of NLO materials based on metal−organic coordination networks. Account Chem Res. 2002;35(7):511–22.CrossRefGoogle Scholar
  17. 17.
    Kent CA, Mehl BP, Ma L, Papanikolas JM, Meyer TJ, Lin W. Energy transfer dynamics in metal−organic frameworks. J Am Chem Soc. 2010;132(37):12767–9.CrossRefGoogle Scholar
  18. 18.
    Liu D, Lu K, Poon C, Lin W. Metal–organic frameworks as sensory materials and imaging agents. Inorg Chem. 2013;53(4):1916–24.CrossRefGoogle Scholar
  19. 19.
    Horcajada P, Gref R, Baati T, Allan PK, Maurin G, Couvreur P, et al. Metal–organic frameworks in biomedicine. Chem Rev. 2011;112(2):1232–68.CrossRefGoogle Scholar
  20. 20.
    Baati T, Njim L, Neffati F, Kerkeni A, Bouttemi M, Gref R, et al. In depth analysis of the in vivo toxicity of nanoparticles of porous iron (III) metal–organic frameworks. Chem Sci. 2013;4(4):1597–607.CrossRefGoogle Scholar
  21. 21.
    Della Rocca J, Liu D, Lin W. Nanoscale metal–organic frameworks for biomedical imaging and drug delivery. Account Chem Res. 2011;44(10):957–68.CrossRefGoogle Scholar
  22. 22.
    Horcajada P, Chalati T, Serre C, Gillet B, Sebrie C, Baati T, et al. Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat Mater. 2010;9(2):172–8.CrossRefGoogle Scholar
  23. 23.
    Sun CY, Qin C, Wang CG, Su ZM, Wang S, Wang XL, et al. Chiral nanoporous metal-organic frameworks with high porosity as materials for drug delivery. Adv Mater. 2011;23(47):5629–32.CrossRefGoogle Scholar
  24. 24.
    He C, Lu K, Liu D, Lin W. Nanoscale metal–organic frameworks for the co-delivery of cisplatin and pooled siRNAs to enhance therapeutic efficacy in drug-resistant ovarian cancer cells. J Am Chem Soc. 2014;136(14):5181–4.CrossRefGoogle Scholar
  25. 25.
    Zhuang J, Kuo CH, Chou LY, Liu DY, Weerapana E, Tsung CK. Optimized metal–organic-framework nanospheres for drug delivery: evaluation of small-molecule encapsulation. ACS Nano. 2014;8(3):2812–9.CrossRefGoogle Scholar
  26. 26.
    Lin W, Hu Q, Jiang K, Cui Y, Yang Y, Qian G. A porous Zn-based metal-organic framework for pH and temperature dual-responsive controlled drug release. Microporous Mesoporous Mat. 2017;249:55–60.CrossRefGoogle Scholar
  27. 27.
    Davis ME, Chen Z, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov. 2008;7:771–82.CrossRefGoogle Scholar
  28. 28.
    Dyson PJ, Sava G. Metal-based antitumour drugs in the post genomic era. Dalton Trans. 2006;(16):1929–33.Google Scholar
  29. 29.
    Manoochehri S, Darvishi B, Kamalinia G, Amini M, Fallah M, Ostad SN, et al. Surface modification of PLGA nanoparticles via human serum albumin conjugation for controlled delivery of docetaxel. DARU. 2013;21(1):58.CrossRefGoogle Scholar
  30. 30.
    Vallet-Regi M, Ramila A, Del Real RP, Pérez-Pariente J. A new property of MCM-41: drug delivery system. Chem Mater. 2001;13(2):308–11.CrossRefGoogle Scholar
  31. 31.
    Cai W, Chu CC, Liu G, Wáng YXJ. Metal–organic framework-based nanomedicine platforms for drug delivery and molecular imaging. Small. 2015;11(37):4806–22.CrossRefGoogle Scholar
  32. 32.
    Anand R, Borghi F, Manoli F, Manet I, Agostoni V, Reschiglian P, et al. Host–guest interactions in Fe (III)-trimesate MOF nanoparticles loaded with doxorubicin. J Phys Chem B. 2014;118(29):8532–9.CrossRefGoogle Scholar
  33. 33.
    He L, Wang T, An J, Li X, Zhang L, Li L, et al. Carbon nanodots@zeolitic imidazolate framework-8 nanoparticles for simultaneous pH-responsive drug delivery and fluorescence imaging. CrystEngComm. 2014;16(16):3259–63.CrossRefGoogle Scholar
  34. 34.
    Wang L, Zhu SJ, Wang HY, Qu SN, Zhang YL, Zhang JH, et al. Common origin of green luminescence in carbon nanodots and graphene quantum dots. ACS Nano. 2014;8(3):2541–7.CrossRefGoogle Scholar
  35. 35.
    Tetsuka H, Asahi R, Nagoya A, Okamoto K, Tajima I, Ohta R, et al. Optically tunable amino-functionalized graphene quantum dots. Adv Mater. 2012;24(39):5333–8.CrossRefGoogle Scholar
  36. 36.
    Martindale BC, Hutton GA, Caputo CA, Prantl S, Godin R, Durrant JR, et al. Enhancing light absorption and charge transfer efficiency in carbon dots through graphitization and core nitrogen doping. Angew Chem Int Ed. 2017;56(23):6459–63.CrossRefGoogle Scholar
  37. 37.
    Xiao Q, Liang Y, Zhu F, Lu S, Huang S. Microwave-assisted one-pot synthesis of highly luminescent N-doped carbon dots for cellular imaging and multi-ion probing. Microchim Acta. 2017;184(7):2429–38.CrossRefGoogle Scholar
  38. 38.
    Sun YP, Zhou B, Lin Y, Wang W, Fernando KS, Pathak P, et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc. 2006;128(24):7756–7.CrossRefGoogle Scholar
  39. 39.
    Ruyra A, Yazdi A, Espín J, Carné-Sánchez A, Roher N, Lorenzo J, et al. Synthesis, culture medium stability, and in vitro and in vivo zebrafish embryo toxicity of metal–organic framework nanoparticles. Chem Eur J. 2015;21(6):2508–18.CrossRefGoogle Scholar
  40. 40.
    Lu S, Guo S, Xu P, Li X, Zhao Y, Gu W, et al. Hydrothermal synthesis of nitrogen-doped carbon dots with real-time live-cell imaging and blood–brain barrier penetration capabilities. Int J Nanomedicine. 2016;11:6325–36.CrossRefGoogle Scholar
  41. 41.
    Haydar MA, Abid HR, Sunderland B, Wang S. Metal organic frameworks as a drug delivery system for flurbiprofen. Drug Des Dev Ther. 2017;11:2685–95.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Khalil Tabatabaeian
    • 1
    Email author
  • Masoomeh Simayee
    • 1
  • Abdollah Fallah-Shojaie
    • 1
  • Farhad Mashayekhi
    • 2
  1. 1.Department of Chemistry, Faculty of SciencesUniversity of GuilanRashtIran
  2. 2.Department of Biology, Faculty of SciencesUniversity of GuilanRashtIran

Personalised recommendations