Advertisement

In vitro investigation of the effects of boron nitride nanotubes and curcumin on DNA damage

  • Tuğbagül Çal
  • Ülkü Ündeğer BucurgatEmail author
Research Article
  • 61 Downloads

Abstract

Backround

Stem cells provide an opportunity to analyse the effects of xenobiotic on cell viability, differentiation and cell functions. Evaluation of the possible cytotoxic and DNA damaging effects on bone marrow CD34+ stem cells is important for their ability to differentiate into blood cells, and also for bone marrow diseases therapy. Boron nitride nanotubes and curcumin are potential nanoformulation agents that can be used together in the treatment of cancer or bone marrow diseases. Therefore, it is important to evaluate their possible effects on different cell lines.

Objectives

In this study, it was aimed to evaluate the cytotoxic and DNA damaging effects of boron nitride nanotubes which are commonly used in pyroelectric, piezoelectric and optical applications, but there is not enough information about its biocompatibility. Also, it was intended to research the effects of curcumin being used frequently in treatment processes for antioxidant properties.

Methods

The possible cytotoxic and DNA damaging effects of boron nitride nanotubes and curcumin on CD34+ cells, HeLa and V79 cells were evaluated by MTT assay and Comet assay, respectively.

Results and conclusion

Boron nitride nanotubes and curcumin had cytotoxic effects and cause DNA damage on CD34+ cells, HeLa and V79 cells at several concentrations, probably because of increased ROS level. However, there were not concentration - dependent effect and there were controversial toxicity results of the studied cell lines. Its mechanism needs to be enlightened by further analysis for potential targeted drug development.

Graphical abstract

Keywords

Bone marrow CD34+ stem cell Boron nitride Curcumin Comet assay V79 cell HeLa cell 

Notes

Funding

This study is supported by Hacettepe University Scientific Research Projects Coordination Unit under Grant number THD-2015-8174.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Liu W, Deng Y, Liu Y, Gong W, Deng W. Stem cell models for drug discovery and toxicology studies. J Biochem Mol Toxicol. 2013;27(1):17–27.CrossRefGoogle Scholar
  2. 2.
    Mori H, Hara M. Cultured stem cells as tools for toxicological assays. J Biosci Bioeng. 2013;116(6):647–52.CrossRefGoogle Scholar
  3. 3.
    Kang K-S, Trosko JE. Stem cells in toxicology: fundamental biology and practical considerations. Toxicol Sci. 2010;120(S1):S269–S89.Google Scholar
  4. 4.
    Edwards RG. Stem cells today: B1. Bone marrow stem cells. Reprod BioMed Online. 2004;9(5):541–83.CrossRefGoogle Scholar
  5. 5.
    Parmar K, D’Andrea AD. Stressed out: endogenous aldehydes damage hematopoietic stem cells. Cell Stem Cell. 2012;11(5):583–4.CrossRefGoogle Scholar
  6. 6.
    Xu A, Hei TK. Genotoxicity of nanoparticles. In: Lieberman HB, Friedman MY, Lu J, editors. Center for radiological research. New York: Colombia University; 2006. p. 47–9.Google Scholar
  7. 7.
    Azqueta A, Dusinska M. The use of the comet assay for the evaluation of the genotoxicity of nanomaterials. Front Genet. 2015;6.  https://doi.org/10.3389/fgene.2015.00239.
  8. 8.
    Ciofani G, Raffa V, Menciassi A, Dario P. Preparation of boron nitride nanotubes aqueous dispersions for biological applications. J Nanosci Nanotechnol. 2008;8(12):6223–31.CrossRefGoogle Scholar
  9. 9.
    Zhi C, Bando Y, Tang C, Golberg D. Boron nitride nanotubes. Materials Science and Engineering: R: Reports. 2010;70(3):92–111.CrossRefGoogle Scholar
  10. 10.
    Ciofani G, Raffa V, Menciassi A, Cuschieri A. Boron nitride nanotubes: an innovative tool for nanomedicine. Nano Today. 2009;4(1):8–10.CrossRefGoogle Scholar
  11. 11.
    Punfa W, Yodkeeree S, Pitchakarn P, Ampasavate C, Limtrakul P. Enhancement of cellular uptake and cytotoxicity of curcumin-loaded PLGA nanoparticles by conjugation with anti-P-glycoprotein in drug resistance cancer cells. Acta Pharmacol Sin. 2012;33(6):823–31.CrossRefPubMedCentralGoogle Scholar
  12. 12.
    Yin H, Zhang H, Liu B. Superior anticancer efficacy of curcumin-loaded nanoparticles against lung cancer. Acta Biochim Biophys Sin. 2013;45(8):634–40.CrossRefGoogle Scholar
  13. 13.
    Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1–2):55–63.CrossRefGoogle Scholar
  14. 14.
    Ferrari M, Fornasiero MC, Isetta AM. MTT colorimetric assay for testing macrophage cytotoxic activity in vitro. J Immunol Methods. 1990;131(2):165–72.CrossRefGoogle Scholar
  15. 15.
    Ferreira TH, Silva P, Santos R, Sousa E. A novel synthesis route to produce boron nitride nanotubes for bioapplications. Journal of biomaterials and nanobiotechnology. 2011;2:426–34.CrossRefGoogle Scholar
  16. 16.
    Bacanli M, Anlar HG, Başaran AA, Başaran N. Assessment of cytotoxicity profiles of different phytochemicals: comparison of neutral red and MTT assays in different cells in different time periods. Turkish Journal of Pharmaceutical Sciences. 2017;14(2):95–107.CrossRefGoogle Scholar
  17. 17.
    Singh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res. 1988;175(1):184–91.CrossRefGoogle Scholar
  18. 18.
    Hartmann A, Kiskinis E, Fjällman A, Suter W. Influence of cytotoxicity and compound precipitation on test results in the alkaline comet assay. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 2001;497(1):199–212.CrossRefGoogle Scholar
  19. 19.
    Singla P, Goel N, Singhal S. Boron nitride nanomaterials with different morphologies: synthesis, characterization and efficient application in dye adsorption. Ceram Int. 2015;41(9):10565–77.CrossRefGoogle Scholar
  20. 20.
    Adegoke O, Park EY. Gold nanoparticle-quantum dot fluorescent nanohybrid: application for localized surface plasmon resonance-induced molecular beacon ultrasensitive DNA detection. Nanoscale Res Lett. 2016;11:523.  https://doi.org/10.1186/s11671-016-1748-3.CrossRefPubMedCentralGoogle Scholar
  21. 21.
    Soares DCF, Ferreira TH, de Aguiar Ferreira C, Cardoso VN, de Sousa EMB. Boron nitride nanotubes radiolabeled with 99mTc: preparation, physicochemical characterization, biodistribution study, and scintigraphic imaging in Swiss mice. Int J Pharm. 2012;423:489–95.  https://doi.org/10.1016/j.ijpharm.2011.12.002.CrossRefGoogle Scholar
  22. 22.
    Yanbakan S. Hücresel tedavi ürünlerinin klinik kullanım alanları. J Clin Exp Investig. 2015;6(2):202–8.CrossRefGoogle Scholar
  23. 23.
    Wobus AM, Löser P. Present state and future perspectives of using pluripotent stem cells in toxicology research. Arch Toxicol. 2011;85(2):79–117.CrossRefPubMedCentralGoogle Scholar
  24. 24.
    Nygren JM, Jovinge S, Breitbach M, Säwén P, Röll W, Hescheler J, et al. Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat Med. 2004;10(5):494–501.CrossRefGoogle Scholar
  25. 25.
    Klaassen CD, Amdur MO. Casarett and Doull's toxicology: the basic science of poisons. 7th ed. London: McGraw-Hill; 2008.Google Scholar
  26. 26.
    Horvath L, Magrez A, Golberg D, Zhi C, Bando Y, Smajda R, et al. In vitro investigation of the cellular toxicity of boron nitride nanotubes. ACS Nano. 2011;5(5):3800–10.CrossRefGoogle Scholar
  27. 27.
    Akram M, Uddin S, Ahmed A, Usmanghani K, Hannan A, Mohiuddin E, et al. Curcuma longa and curcumin: a review article. Rom J Biol Plant Biol. 2010;55(2):65–70.Google Scholar
  28. 28.
    Liu J, Xu L, Liu C, Zhang D, Wang S, Deng Z, et al. Preparation and characterization of cationic curcumin nanoparticles for improvement of cellular uptake. Carbohydr Polym. 2012;90(1):16–22.CrossRefGoogle Scholar
  29. 29.
    Mazzarino L, Travelet C, Ortega-Murillo S, Otsuka I, Pignot-Paintrand I, Lemos-Senna E, et al. Elaboration of chitosan-coated nanoparticles loaded with curcumin for mucoadhesive applications. J Colloid Interface Sci. 2012;370(1):58–66.CrossRefGoogle Scholar
  30. 30.
    Niskanen J, Zhang I, Xue Y, Golberg D, Maysinger D, Winnik FM. Boron nitride nanotubes as vehicles for intracellular delivery of fluorescent drugs and probes. Nanomedicine. 2016;11(5):447–63.CrossRefGoogle Scholar
  31. 31.
    Ciofani G, Raffa V, Yu J, Chen Y, Obata Y, Takeoka S, et al. Boron nitride nanotubes: a novel vector for targeted magnetic drug delivery. Curr Nanosci. 2009;5(1):33–8.CrossRefGoogle Scholar
  32. 32.
    Li X, Zhi C, Hanagata N, Yamaguchi M, Bando Y, Golberg D. Boron nitride nanotubes functionalized with mesoporous silica for intracellular delivery of chemotherapy drugs. Chem Commun. 2013;49(66):7337–9.CrossRefGoogle Scholar
  33. 33.
    Raffa V, Ciofani G, Cuschieri A. Enhanced low voltage cell electropermeabilization by boron nitride nanotubes. Nanotechnology. 2009;20:075104.  https://doi.org/10.1088/0957-4484/20/7/075104.CrossRefGoogle Scholar
  34. 34.
    Yinghuai Z, Cheng Yan K, Maguire J, Hosmane N. Recent developments in boron neutron capture therapy driven by nanotechnology. Boron Science: New Technologies and Applications Volume. 2007;1:147–163.Google Scholar
  35. 35.
    Ferreira TH, Marino A, Rocca A, Liakos I, Nitti S, Athanassiou A, et al. Folate-grafted boron nitride nanotubes: possible exploitation in cancer therapy. Int J Pharm. 2015;481(1–2):56–63.CrossRefGoogle Scholar
  36. 36.
    Rowe RI, Bouzan C, Nabili S, Eckhert CD. The response of trout and zebrafish embryos to low and high boron concentrations is U-shaped. Biol Trace Elem Res. 1998;66(1–3):261–70.CrossRefGoogle Scholar
  37. 37.
    Ferreira T, Hollanda L, Lancellotti M, de Sousa EB. Boron nitride nanotubes chemically functionalized with glycol chitosan for gene transfection in eukaryotic cell lines. J Biomed Mater Res A. 2015;103(6):2176–85.CrossRefGoogle Scholar
  38. 38.
    Lahiri D, Singh V, Benaduce AP, Seal S, Kos L, Agarwal A. Boron nitride nanotube reinforced hydroxyapatite composite: mechanical and tribological performance and in-vitro biocompatibility to osteoblasts. J Mech Behav Biomed Mater. 2011;4(1):44–56.CrossRefGoogle Scholar
  39. 39.
    Del Turco S, Ciofani G, Cappello V, Gemmi M, Cervelli T, Saponaro C, et al. Cytocompatibility evaluation of glycol-chitosan coated boron nitride nanotubes in human endothelial cells. Colloids Surf B: Biointerfaces. 2013;111:142–9.CrossRefGoogle Scholar
  40. 40.
    Danti S, Ciofani G, Moscato S, D’Alessandro D, Ciabatti E, Nesti C, et al. Boron nitride nanotubes and primary human osteoblasts: in vitro compatibility and biological interactions under low frequency ultrasound stimulation. Nanotechnology. 2013;24:465102.  https://doi.org/10.1088/0957-4484/24/46/465102.CrossRefGoogle Scholar
  41. 41.
    Ciofani G, Raffa V, Menciassi A, Cuschieri A. Folate functionalized boron nitride nanotubes and their selective uptake by glioblastoma multiforme cells: implications for their use as boron carriers in clinical boron neutron capture therapy. Nanoscale Res Lett. 2009;4(2):113–21.CrossRefGoogle Scholar
  42. 42.
    Rocca A, Marino A, Del Turco S, Cappello V, Parlanti P, Pellegrino M, et al. Pectin-coated boron nitride nanotubes: in vitro cyto−/immune-compatibility on RAW 264.7 macrophages. BBA General Subjects. 2016;1860(4):775–84.CrossRefGoogle Scholar
  43. 43.
    Li X, Wang X, Jiang X, Yamaguchi M, Ito A, Bando Y, et al. Boron nitride nanotube-enhanced osteogenic differentiation of mesenchymal stem cells. J Biomed Mater Res B Appl Biomater. 2016;104(2):323–9.CrossRefGoogle Scholar
  44. 44.
    Singh B, Kaur G, Singh P, Singh K, Kumar B, Vij A, et al. Nanostructured boron nitride with high water Dispersibility for boron neutron capture therapy. Sci Rep. 2016;6.  https://doi.org/10.1038/srep35535.
  45. 45.
    Abernethy DJ, Kleymenova EV, Rose J, Recio L, Faiola B. Human CD34+ hematopoietic progenitor cells are sensitive targets for toxicity induced by 1, 4-benzoquinone. Toxicol Sci. 2004;79(1):82–9.CrossRefGoogle Scholar
  46. 46.
    Ciofani G, Del Turco S, Genchi GG, D’Alessandro D, Basta G, Mattoli V. Transferrin-conjugated boron nitride nanotubes: protein grafting, characterization, and interaction with human endothelial cells. Int J Pharm. 2012;436(1–2):444–53.CrossRefGoogle Scholar
  47. 47.
    Fernandez-Yague MA, Larrañaga A, Gladkovskaya O, Stanley A, Tadayyon G, Guo Y, et al. Effects of polydopamine functionalization on boron nitride nanotube dispersion and cytocompatibility. Bioconjug Chem. 2015;26(10):2025–37.CrossRefGoogle Scholar
  48. 48.
    Khalil HE, Mohamed ME, Morsy MA, Kandeel M. Flavonoid and phenolic compounds from Carissa macrocarpa: molecular docking and cytotoxicity studies. Pharmacogn Mag. 2018;14(57):304–10.CrossRefGoogle Scholar
  49. 49.
    Kassim M, Achoui M, Mustafa MR, Mohd MA, Yusoff KM. Ellagic acid, phenolic acids, and flavonoids in Malaysian honey extracts demonstrate in vitro anti-inflammatory activity. Nutr Res. 2010;30(9):650–9.CrossRefGoogle Scholar
  50. 50.
    Kumar D, Basu S, Parija L, Rout D, Manna S, Dandapat J, et al. Curcumin and Ellagic acid synergistically induce ROS generation, DNA damage, p53 accumulation and apoptosis in HeLa cervical carcinoma cells. Biomed Pharmacother. 2016;81:31–7.CrossRefGoogle Scholar
  51. 51.
    Nair KL, Thulasidasan AKT, Deepa G, Anto RJ, Kumar GV. Purely aqueous PLGA nanoparticulate formulations of curcumin exhibit enhanced anticancer activity with dependence on the combination of the carrier. Int J Pharm. 2012;425(1–2):44–52.CrossRefGoogle Scholar
  52. 52.
    Chen Z-G, Zou J, Liu G, Li F, Wang Y, Wang L, et al. Novel boron nitride hollow nanoribbons. ACS Nano. 2008;2(10):2183–91.CrossRefGoogle Scholar
  53. 53.
    Ferreira TH, Soares DCF, Moreira LMC, da Silva PRO, dos Santos RG, de Sousa EMB. Boron nitride nanotubes coated with organic hydrophilic agents: stability and cytocompatibility studies. Mater Sci Eng C. 2013;33(8):4616–23.CrossRefGoogle Scholar
  54. 54.
    Emanet M, Şen Ö, Çobandede Z, Çulha M. Interaction of carbohydrate modified boron nitride nanotubes with living cells. Colloids Surf B: Biointerfaces. 2015;134:440–6.CrossRefGoogle Scholar
  55. 55.
    Cao J, Jia L, Zhou H-M, Liu Y, Zhong L-F. Mitochondrial and nuclear DNA damage induced by curcumin in human hepatoma G2 cells. Toxicol Sci. 2006;91(2):476–83.CrossRefGoogle Scholar
  56. 56.
    Cao J, Liu Y, Jia L, Jiang L-P, Geng C-Y, Yao X-F, et al. Curcumin attenuates acrylamide-induced cytotoxicity and genotoxicity in HepG2 cells by ROS scavenging. J Agric Food Chem. 2008;56(24):12059–63.CrossRefGoogle Scholar
  57. 57.
    Thayyullathil F, Chathoth S, Hago A, Patel M, Galadari S. Rapid reactive oxygen species (ROS) generation induced by curcumin leads to caspase-dependent and-independent apoptosis in L929 cells. Free Radic Biol Med. 2008;45(10):1403–12.CrossRefGoogle Scholar
  58. 58.
    Cao J, Jiang L-P, Liu Y, Yang G, Yao X-F, Zhong L-F. Curcumin-induced genotoxicity and antigenotoxicity in HepG2 cells. Toxicon. 2007;49(8):1219–22.CrossRefGoogle Scholar
  59. 59.
    Chapman JR, Taylor MR, Boulton SJ. Playing the end game: DNA double-strand break repair pathway choice. Mol Cell. 2012;47(4):497–510.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Pharmaceutical Toxicology, Faculty of PharmacyHacettepe UniversityAnkaraTurkey

Personalised recommendations