Advertisement

Iron oxide nanoparticulate system as a cornerstone in the effective delivery of Tc-99 m radionuclide: a potential molecular imaging probe for tumor diagnosis

  • Mohamed M. SwidanEmail author
  • Omnya M. Khowessah
  • Mohamed Abd El-Motaleb
  • Ahmed Abd El-Bary
  • Mohamed T. El-Kolaly
  • Tamer M. SakrEmail author
Research Article

Abstract

Background

The evolution of nanoparticles has gained prominence as platforms for developing diagnostic and/or therapeutic radiotracers. This study aims to develop a novel technique for fabricating a tumor diagnostic probe based on iron oxide nanoparticles excluding the utilization of chelating ligands.

Methods

Tc-99 m radionuclide was loaded into magnetic iron oxide nanoparticles platform (MIONPs) by sonication. 99mTc-encapsulated MIONPs were fully characterized concerning particles size, charge, radiochemical purity, encapsulation efficiency, in-vitro stability and cytotoxicity. These merits were biologically evaluated in normal and solid tumor bearing mice via different delivery approaches.

Results

99mTc-encapsulated MIONPs probe was synthesized with average particle size 24.08 ± 7.9 nm, hydrodynamic size 52 nm, zeta potential -28 mV, radiolabeling yield 96 ± 0.83%, high in-vitro physiological stability, and appropriate cytotoxicity behavior. The in-vivo evaluation in solid tumor bearing mice revealed that the maximum tumor radioactivity accumulation (25.39 ± 0.57, 36.40 ± 0.59 and 72.61 ± 0.82%ID/g) was accomplished at 60, 60 and 30 min p.i. for intravenous, intravenous with physical magnet targeting and intratumoral delivery, respectively. The optimum T/NT ratios of 57.70, 65.00 and 87.48 were demonstrated at 60 min post I.V., I.V. with physical magnet targeting and I.T. delivery, respectively. These chemical and biological characteristics of our prepared nano-probe demonstrate highly advanced merits over the previously reported chelator mediated radiolabeled nano-formulations which reported maximum tumor uptakes in the scope of 3.65 ± 0.19 to 16.21 ± 2.56%ID/g.

Conclusion

Stabilized encapsulation of 99mTc radionuclide into MIONPs elucidates a novel strategy for developing an advanced nano-sized radiopharmaceutical for tumor diagnosis.

Graphical abstract

99mTc-encapsulated MIONPs nanosized-radiopharmaceutical as molecular imaging probe for tumor diagnosis

Keywords

Magnetic iron oxide nanoparticles Tc-99 m radionuclide Chelator free radiolabeling Encapsulation Tumor delivery Tumor diagnosis 

Notes

Acknowledgments

Associate Prof. Tamer M. Sakr expresses his grateful appreciation and thanks for International Atomic Energy Authority (IAEA) for international collaboration and funding this work under CRP No. F22064.

References

  1. 1.
    Sakr TM, Khowessah OM, Motaleb MA, Abd El-Bary A, El-Kolaly MT, Swidan MM. I-131 doping of silver nanoparticles platform for tumor theranosis guided drug delivery. Eur J Pharm Sci. 2018;122:239–45.CrossRefGoogle Scholar
  2. 2.
    Xing Y, Zhao J, Shi X, Conti PS, Chen K. Recent development of radiolabeled nanoparticles for PET imaging. Austin J Nanomed Nanotechnol. 2014;2(2):1016.Google Scholar
  3. 3.
    De Barros AB, Tsourkas A, Saboury B, Cardoso VN, Alavi A. Emerging role of radiolabeled nanoparticles as an effective diagnostic technique. EJNMMI Res. 2012;2(1):39.CrossRefGoogle Scholar
  4. 4.
    Welch MJ, Hawker CJ, Wooley KL. The advantages of nanoparticles for PET. J Nucl Med. 2009;50:1743–6.CrossRefGoogle Scholar
  5. 5.
    Goel S, Chen F, Ehlerding EB, Cai W. Intrinsically radiolabeled nanoparticles: an emerging paradigm. Small. 2014;10(19):3825–30.CrossRefGoogle Scholar
  6. 6.
    Zhao J, Zhou M, Li C. Synthetic nanoparticles for delivery of radioisotopes and radiosensitizers in cancer therapy. Cancer Nanotechnol. 2016;7(1):9.CrossRefGoogle Scholar
  7. 7.
    Lamb JR, Holland JP. Advanced methods for radiolabelling nanomedicines for multi-modality nuclear/MR imaging. J Nucl Med. 2018;59(3):382–9.CrossRefGoogle Scholar
  8. 8.
    Cisneros BT, Law JJ, Matson ML, Azhdarinia A, Sevick-Muraca EM, Wilson LJ. Stable confinement of positron emission tomography and magnetic resonance agents within carbon nanotubes for bimodal imaging. Nanomedicine. 2014;9(16):2499–509.CrossRefGoogle Scholar
  9. 9.
    Guven A, Rusakova IA, Lewis MT, Wilson LJ. Cisplatin@ US-tube carbon nanocapsules for enhanced chemotherapeutic delivery. Biomaterials. 2012;33(5):1455–61.CrossRefGoogle Scholar
  10. 10.
    Abou DS, Pickett JE, Thorek DLJ. Nuclear molecular imaging with nanoparticles: radiochemistry, applications and translation. Br J Radiol. 2015;88:1054.CrossRefGoogle Scholar
  11. 11.
    Maria AVW, Margarida MCO, Marcela Z, Ariane JSB, Mohammed Q, Ralph SO. Nanoradiopharmaceuticals for nanomedicine: building the future. Recent Pat Nanomed. 2014;4(2):90–4.Google Scholar
  12. 12.
    Ting G, Chang CH, Wang HE. Cancer nanotargeted radiopharmaceuticals for tumor imaging and therapy. Anticancer Res. 2009;29:4107–18.Google Scholar
  13. 13.
    Ali A, Zafar H, Zia M, Ul Haq I, Phull AR, Ali JS, et al. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol Sci Appl. 2016;9:49–67.CrossRefGoogle Scholar
  14. 14.
    Lu Q, Wei D, Zhou J, Xu J, Cheng J, Zhu J. Preparation of polymer-functionalized iron oxide nanoparticles and their biomedical properties. Chin J Chem. 2013;31:40–406.CrossRefGoogle Scholar
  15. 15.
    Swidan MM, Sakr TM, Motaleb MA, Abd El-Bary A, El-Kolaly MT. Preliminary assessment of radioiodinated fenoterol and reproterol as potential scintigraphic agents for lung imaging. J Radioanal Nucl Chem. 2015;303:531–9.CrossRefGoogle Scholar
  16. 16.
    Swidan MM, Sakr TM, Motaleb MA, Abd El-Bary A, El-Kolaly MT. Radioiodinated acebutolol as a new highly selective radiotracer for myocardial perfusion imaging. J Label Compd Radiopharm. 2014;57:593–9.CrossRefGoogle Scholar
  17. 17.
    Sakr TM, Ibrahim AB, Fasih TW, Rashed HM. Preparation and biological profile of 99mTc-lidocaine as a cardioselective imaging agent using 99mTc eluted from 99Mo/99mTc generator based on Al-Mo gel. J Radioanal Nucl Chem. 2017;314(3):2091–8.CrossRefGoogle Scholar
  18. 18.
    Radovic M, Calatayud MP, Goya GF, Ibarra MR, Antic B, Spasojevic V, et al. Preparation and in vivo evaluation of multifunctional 90Y-labeled magnetic nanoparticles designed for cancer therapy. J Biomed Mater Res A. 2015;103(1):126–34.CrossRefGoogle Scholar
  19. 19.
    Liu XL, Fan HM, Yi JB, Yang Y, Choo ESG, Xue JM, et al. Optimization of surface coating on Fe3O4 nanoparticles for high performance magnetic hyperthermia agents. J Mater Chem B. 2012;22:8235–44.CrossRefGoogle Scholar
  20. 20.
    Sinha N, Cifter G, Sajo E, Kumar R, Sridhar S, Nguyen PL, et al. Brachytherapy application with in situ dose painting administered by gold nanoparticle eluters. Int J Radiat Oncol Biol Phys. 2015;91:385–92.CrossRefGoogle Scholar
  21. 21.
    Kong L, Hu J, Qin D, Yan P. Interaction of Ifosfamide-loaded superparamagnetic iron oxide nanoparticles with human serum albumin-a biophysical study. J Pharm Innov. 2015;10:13–20.CrossRefGoogle Scholar
  22. 22.
    Mondini S, Cenedese S, Marinoni G, Molteni G, Santo N, Bianchi CL, et al. One-step synthesis and functionalization of hydroxyl-decorated magnetite nanoparticles. J Colloid Interface Sci. 2008;322:173–9.CrossRefGoogle Scholar
  23. 23.
    Khayatian G, Hassanpoor S, Azar ARJ, Mohebbi S. Spectrophotometric determination of trace amounts of uranium(VI) using modified magnetic iron oxide nanoparticles in environmental and biological samples. J Braz Chem Soc. 2013;24:1808–17.Google Scholar
  24. 24.
    Mirshojaei SF, Ahmadi A, Avila EM, Reynoso MO, Perez HR. Radiolabelled nanoparticles: novel classification of radiopharmaceuticals for molecular imaging of cancer. J Drug Target. 2016;24(2):91–101.CrossRefGoogle Scholar
  25. 25.
    Tsiapa I, Efthimiadou EK, Fragogeorgi E, Loudos G, Varvarigou AD, Bouziotis P, et al. 99mTc-labeled aminosilane-coated iron oxide nanoparticles for molecular imaging of αvβ3-mediated tumor expression and feasibility for hyperthermia treatment. J Colloid Interface Sci. 2014;433:163–75.CrossRefGoogle Scholar
  26. 26.
    Banerjee S, Pillai MR, Ramamoorthy N. Evolution of Tc-99m in diagnostic radiopharmaceuticals. Semin Nucl Med. 2001;31:260–77.CrossRefGoogle Scholar
  27. 27.
    Matson ML, Villa CH, Ananta JS, Law JJ, Scheinberg DA, Wilson LJ. Encapsulation of α-particle-emitting 225Ac3+ ions within carbon nanotubes. J Nucl Med. 2015;56(6):897–900.CrossRefGoogle Scholar
  28. 28.
    Gonzales M, Mitsumori LM, Kushleika JV, Rosenfeld ME, Krishnan KM. Cytotoxicity of iron oxide nanoparticles made from the thermal decom-position of organometallics and aqueous phase transfer with Pluronic F127. Contrast Media Mol Imaging. 2010;5(5):286–93.CrossRefGoogle Scholar
  29. 29.
    Hoskins C, Cuschieri A, Wang L. The cytotoxicity of polycationic iron oxide nanoparticles: common endpoint assays and alternative approaches for improved understanding of cellular response mechanism. J Nanobiotechnology. 2012;10:15.CrossRefGoogle Scholar
  30. 30.
    Bao A, Goins B, Klipper R, Negrete G, Phillips WT. Direct 99mTc labeling of pegylated liposomal doxorubicin (Doxil) for pharmacokinetic and non-invasive imaging studies. J Pharmacol Exp Ther. 2004;308:419–25.CrossRefGoogle Scholar
  31. 31.
    Amirkhizi AA, Banaem LM, Allaf MA, Sadjadi S, Daha FJ. Development of dendrimer encapsulated Radio-Ytterbium and biodistributionin tumor bearing mice. IEEE Trans NanoBiosci. 2016;15(6):549–54.CrossRefGoogle Scholar
  32. 32.
    Psimadas D, Bouziotis P, Georgoulias P, Valotassiou V, Tsotakos T, Loudos G. Radiolabeling approaches of nanoparticles with 99mTc. Contrast Media Mol Imaging. 2013;8:333–9.CrossRefGoogle Scholar
  33. 33.
    Zhang G, Yang Z, Lu W, Zhang R, Huang Q, Tian M, et al. Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice. Biomaterials. 2009;30(10):1928–36.CrossRefGoogle Scholar
  34. 34.
    Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer. 2017;17:20–37.CrossRefGoogle Scholar
  35. 35.
    Thakor AS, Gambhir SS. Nanooncology: the future of cancer diagnosis and therapy. CA Cancer J Clin. 2013;63:395–418.CrossRefGoogle Scholar
  36. 36.
    Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancerchemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46(12):6387–92.Google Scholar
  37. 37.
    Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzym Regul. 2001;41:189–207.CrossRefGoogle Scholar
  38. 38.
    Folkman J. What is the evidence that tumors are angiogenesis dependent. J Natl Cancer Inst. 1990;82(1):4.CrossRefGoogle Scholar
  39. 39.
    Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med. 1995;1(1):27.CrossRefGoogle Scholar
  40. 40.
    Folkman J. Tumor angiogenesis-therapeutic implications. N Engl J Med. 1971;285(21):1182–6.CrossRefGoogle Scholar
  41. 41.
    Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP, et al. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci U S A. 1998;95(8):4607–12.CrossRefGoogle Scholar
  42. 42.
    Venturoli D, Rippe B. Ficoll and dextran vs. globular proteins as probes for testing glomerular permselectivity: effects of molecular size, shape, charge, and deformability. Am J Physiol Renal Physiol. 2005;288(4):F605–13.CrossRefGoogle Scholar
  43. 43.
    Konno T, Maeda H, Iwai K, Maki S, Tashiro S, Uchida M, et al. Selective targeting of anticancer drug and simultaneous image enhancement in solid tumors by arterially administered lipid contrast-medium. Cancer. 1984;54(11):2367–74.CrossRefGoogle Scholar
  44. 44.
    Moghimi SM, Szebeni J. Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog Lipid Res. 2003;42(6):463–78.CrossRefGoogle Scholar
  45. 45.
    Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev. 2001;53(2):283–318.Google Scholar
  46. 46.
    Gref R, Luck M, Quellec P, Marchand M, Dellacherie E, Harnisch S, et al. Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B Biointerfaces. 2000;18(3–4):301–13.CrossRefGoogle Scholar
  47. 47.
    Yang X, Hong H, Grailer JJ, Rowland IJ, Javadi A, Hurley SA, et al. cRGD-functionalized, DOX-conjugated, and 64Cu-labeled superparamagnetic iron oxide nanoparticles for targeted anticancer drug delivery and PET/MR imaging. Biomaterials. 2011;32(17):4151–60.CrossRefGoogle Scholar
  48. 48.
    Morales-Avila E, Ferro-Flores G, Ocampo-Garcia BE, Leon-Rodriguez LM, Santos-Cuevas CL, Garcia-Becerra R, et al. Multimeric system of 99mTc-labeled gold nanoparticles conjugated to c[RGDfK(C)] for molecular imaging of tumor α(v)β(3) expression. Bioconjug Chem. 2011;22:913–22.CrossRefGoogle Scholar
  49. 49.
    Liu Z, Cai W, He L, Nakayama N, Chen K, Sun X, et al. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat Nanotechnol. 2007;2:47–52.CrossRefGoogle Scholar
  50. 50.
    Lahooti A, Sarkar S, Saligheh-Rad H, Gholami A, Nosrati S, Muller RN, et al. PEGylated superparamagnetic iron oxide nanoparticles labeled with 68Ga as a PET/MRI contrast agent: a biodistribution study. J Radioanal Nucl Chem. 2017;311:769–74.CrossRefGoogle Scholar
  51. 51.
    Natarajan A, Xiong CY, Gruettner C, DeNardo GL, DeNardo SJ. Development of multivalent radioimmunonanoparticles for cancer imaging and therapy. Cancer Biother Radiopharm. 2008;23:82–91.CrossRefGoogle Scholar
  52. 52.
    Hu G, Lijowski M, Zhang H, Partlow KC, Caruthers SD, Kiefer G, et al. Imaging of Vx-2 rabbit tumors with alpha (nu) beta3-integrin-targeted 111In nanoparticles. Int J Cancer. 2007;120(9):1951–7.CrossRefGoogle Scholar
  53. 53.
    Tsoukalas C, Psimadas D, Kastis GA, Koutoulidis V, Harris AL, Paravatou-Petsotas M, et al. A novel metal-based imaging probe for targeted dual-modality SPECT/MR imaging of angiogenesis. Front Chem. 2018;6:224.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Labeled Compounds DepartmentHot Labs Center, Egyptian Atomic Energy AuthorityCairoEgypt
  2. 2.Pharmaceutics and Industrial Pharmacy Department, Faculty of PharmacyCairo UniversityCairoEgypt
  3. 3.Radioactive Isotopes and Generator DepartmentHot Labs Center, Egyptian Atomic Energy AuthorityCairoEgypt
  4. 4.Pharmaceutical Chemistry Department, Faculty of PharmacyModern Sciences and Arts University6th October CityEgypt

Personalised recommendations