Advertisement

DARU Journal of Pharmaceutical Sciences

, Volume 26, Issue 2, pp 229–239 | Cite as

A systematic review of nano formulation of natural products for the treatment of inflammatory bowel disease: drug delivery and pharmacological targets

  • Yasamin Davatgaran Taghipour
  • Roodabeh Bahramsoltani
  • André M. Marques
  • Rozita Naseri
  • Roja Rahimi
  • Pouya Haratipour
  • Amin Iran Panah
  • Mohammad Hosein Farzaei
  • Mohammad Abdollahi
Review Article

Abstract

Inflammatory bowel diseases (IBD), which is classified into Crohn’s disease and ulcerative colitis, are among chronic gastrointestinal diseases with unknown pathogenesis. Diverse strategies have been applied for the treatment of this chronic disease. However, selective and site-specific routes of drug delivery to the inflamed location of the colon remain of high importance. Consequently, the application and effects of natural products in the form of nanoformulation and stimuli responsive nanoparticles as a novel strategy for the treatment of IBD are discussed in this review article. This approach may potentially overcome some complications that are associated with conventional means of colon drug delivery. Meanwhile, in vitro and in vivo studies pave the way for understanding of the mechanism that lies behind this chronic relapsing disease and potentially more effective treatment.

Graphical abstract

Keywords

Inflammatory bowel disease Natural nanoformulation Stimuli responsive nanoparticles Crohn’s disease Ulcerative colitis 

References

  1. 1.
    Beloqui A, Memvanga PB, Coco R, Reimondez-Troitiño S, Alhouayek M, Muccioli GG, et al. A comparative study of curcumin-loaded lipid-based nanocarriers in the treatment of inflammatory bowel disease. Colloids Surf B: Biointerfaces. 2016;143:327–35.CrossRefPubMedGoogle Scholar
  2. 2.
    Cazarin CB, da Silva JK, Colomeu TC, Batista ÂG, Vilella CA, Ferreira AL, et al. Passiflora edulis peel intake and ulcerative colitis: approaches for prevention and treatment. Exp Biol Med. 2014;239(5):542–51.CrossRefGoogle Scholar
  3. 3.
    Zhang M, Wang X, Han MK, Collins JF, Merlin D. Oral administration of ginger-derived nanolipids loaded with siRNA as a novel approach for efficient siRNA drug delivery to treat ulcerative colitis. Nanomedicine. 2017;12(16):1927–43.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bribi N, Algieri F, Rodriguez-Nogales A, Vezza T, Garrido-Mesa J, Utrilla MP, et al. Intestinal anti-inflammatory effects of total alkaloid extract from Fumaria capreolata in the DNBS model of mice colitis and intestinal epithelial CMT93 cells. Phytomedicine. 2016;23(9):901–13.CrossRefPubMedGoogle Scholar
  5. 5.
    Castro J, Ocampo Y, Franco L. Cape gooseberry [Physalis peruviana L.] calyces ameliorate TNBS acid-induced colitis in rats. J Crohn's Colitis. 2015;9(11):1004–15.CrossRefGoogle Scholar
  6. 6.
    Hur SJ, Kang SH, Jung HS, Kim SC, Jeon HS, Kim IH, et al. Review of natural products actions on cytokines in inflammatory bowel disease. Nutr Res. 2012;32(11):801–16.CrossRefPubMedGoogle Scholar
  7. 7.
    Saeidnia S, Abdollahi M. Toxicological and pharmacological concerns on oxidative stress and related diseases. Toxicol Appl Pharmacol. 2013;273(3):442–55.CrossRefPubMedGoogle Scholar
  8. 8.
    Zhang M, Viennois E, Prasad M, Zhang Y, Wang L, Zhang Z, et al. Edible ginger-derived nanoparticles: a novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials. 2016;101:321–40.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Mozaffari S, Nikfar S, Abdolghaffari AH, Abdollahi M. New biologic therapeutics for ulcerative colitis and Crohn's disease. Expert Opin Biol Ther. 2014;14(5):583–600.CrossRefPubMedGoogle Scholar
  10. 10.
    Davatgaran-Taghipour Y, Masoomzadeh S, Farzaei MH, Bahramsoltani R, Karimi-Soureh Z, Rahimi R, et al. Polyphenol nanoformulations for cancer therapy: experimental evidence and clinical perspective. Int J Nanomedicine. 2017;12:2689–702.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Das S, Deshmukh R, Jha A. Role of natural polymers in the development of multiparticulate systems for colon drug targeting. Systematic Reviews in pharmacy. 2010;1(1):79.CrossRefGoogle Scholar
  12. 12.
    Laroui H, Dalmasso G, Nguyen HTT, Yan Y, Sitaraman SV, Merlin D. Drug-loaded nanoparticles targeted to the colon with polysaccharide hydrogel reduce colitis in a mouse model. Gastroenterology 2010;138(3):843–853. e2.CrossRefGoogle Scholar
  13. 13.
    Grivennikov SI, Karin M. Inflammatory cytokines in cancer: tumour necrosis factor and interleukin 6 take the stage. Ann Rheum Dis. 2011;70(Suppl 1):i104–i8.CrossRefPubMedGoogle Scholar
  14. 14.
    Chan AT, Giovannucci EL. Primary prevention of colorectal cancer. Gastroenterology 2010;138(6):2029–2043. e10.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Fukata M, Shang L, Santaolalla R, Sotolongo J, Pastorini C, España C, et al. Constitutive activation of epithelial TLR4 augments inflammatory responses to mucosal injury and drives colitis-associated tumorigenesis. Inflamm Bowel Dis. 2010;17(7):1464–73.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Karimi M, Zare H, Bakhshian Nik A, Yazdani N, Hamrang M, Mohamed E, et al. Nanotechnology in diagnosis and treatment of coronary artery disease. Nanomedicine. 2016;11(5):513–30.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Karimi M, Ghasemi A, Zangabad PS, Rahighi R, Basri SMM, Mirshekari H, et al. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev. 2016;45(5):1457–501.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Zangabad PS, Mirkiani S, Shahsavari S, Masoudi B, Masroor M, Hamed H, et al. Stimulus-responsive liposomes as smart nanoplatforms for drug delivery applications. Nanotechnol Rev. 2017.Google Scholar
  19. 19.
    Mura C, Nácher A, Merino V, Merino-Sanjuan M, Manconi M, Loy G, et al. Design, characterization and in vitro evaluation of 5-aminosalicylic acid loaded N-succinyl-chitosan microparticles for colon specific delivery. Colloids Surf B: Biointerfaces. 2012;94:199–205.CrossRefPubMedGoogle Scholar
  20. 20.
    Seremeta KP, Chiappetta DA, Sosnik A. Poly (ɛ-caprolactone), Eudragit® RS 100 and poly (ɛ-caprolactone)/Eudragit® RS 100 blend submicron particles for the sustained release of the antiretroviral efavirenz. Colloids Surf B: Biointerfaces. 2013;102:441–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Collnot E-M, Ali H, Lehr C-M. Nano-and microparticulate drug carriers for targeting of the inflamed intestinal mucosa. J Control Release. 2012;161(2):235–46.CrossRefPubMedGoogle Scholar
  22. 22.
    Meissner HI, Breen N, Klabunde CN, Vernon SW. Patterns of colorectal cancer screening uptake among men and women in the United States. Cancer Epidemiol Biomark Prev. 2006;15(2):389–94.CrossRefGoogle Scholar
  23. 23.
    Xiao B, Zhang M, Viennois E, Zhang Y, Wei N, Baker MT, et al. Inhibition of MDR1 gene expression and enhancing cellular uptake for effective colon cancer treatment using dual-surface-functionalized nanoparticles. Biomaterials. 2015;48:147–60.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Xiao B, Si X, Zhang M, Merlin D. Oral administration of pH-sensitive curcumin-loaded microparticles for ulcerative colitis therapy. Colloids Surf B: Biointerfaces. 2015;135:379–85.CrossRefPubMedGoogle Scholar
  25. 25.
    Beloqui A, Coco R, Memvanga PB, Ucakar B, des Rieux A, Préat V. pH-sensitive nanoparticles for colonic delivery of curcumin in inflammatory bowel disease. Int J Pharm 2014;473(1–2):203–212.CrossRefPubMedGoogle Scholar
  26. 26.
    Gugulothu D, Kulkarni A, Patravale V, Dandekar P. pH-sensitive nanoparticles of curcumin–celecoxib combination: evaluating drug synergy in ulcerative colitis model. J Pharm Sci. 2014;103(2):687–96.CrossRefPubMedGoogle Scholar
  27. 27.
    Ali H, Weigmann B, Neurath M, Collnot E, Windbergs M, Lehr C-M. Budesonide loaded nanoparticles with pH-sensitive coating for improved mucosal targeting in mouse models of inflammatory bowel diseases. J Control Release. 2014;183:167–77.CrossRefPubMedGoogle Scholar
  28. 28.
    Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater. 2013;12(11):991–1003.CrossRefPubMedGoogle Scholar
  29. 29.
    Castangia I, Nácher A, Caddeo C, Merino V, Díez-Sales O, Catalán-Latorre A, et al. Therapeutic efficacy of quercetin enzyme-responsive nanovesicles for the treatment of experimental colitis in rats. Acta Biomater. 2015;13:216–27.CrossRefPubMedGoogle Scholar
  30. 30.
    Sinha V, Kumria R. Microbially triggered drug delivery to the colon. Eur J Pharm Sci. 2003;18(1):3–18.CrossRefPubMedGoogle Scholar
  31. 31.
    Saphier S, Haft A, Margel S. Bacterial reduction as means for colonic drug delivery: can other chemical groups provide an alternative to the azo bond? J Med Chem. 2012;55(23):10781–5.CrossRefPubMedGoogle Scholar
  32. 32.
    Qiao H, Fang D, Chen J, Sun Y, Kang C, Di L, et al. Orally delivered polycurcumin responsive to bacterial reduction for targeted therapy of inflammatory bowel disease. Drug Deliv. 2017;24(1):233–42.CrossRefPubMedGoogle Scholar
  33. 33.
    Sun Q, Luan L, Arif M, Li J, Dong Q-J, Gao Y, et al. Redox-sensitive nanoparticles based on 4-aminothiophenol-carboxymethyl inulin conjugate for budesonide delivery in inflammatory bowel diseases. Carbohydr Polym. 2017.Google Scholar
  34. 34.
    Zhuang X, Deng Z-B, Mu J, Zhang L, Yan J, Miller D, et al. Ginger-derived nanoparticles protect against alcohol-induced liver damage. J Extracell Vesicles. 2015;4(1):28713.CrossRefPubMedGoogle Scholar
  35. 35.
    Panahi Y, Badeli R, Karami GR, Sahebkar A. Investigation of the efficacy of adjunctive therapy with bioavailability-boosted curcuminoids in major depressive disorder. Phytother Res. 2015;29(1):17–21.CrossRefPubMedGoogle Scholar
  36. 36.
    Ohno M, Nishida A, Sugitani Y, Nishino K, Inatomi O, Sugimoto M, et al. Nanoparticle curcumin ameliorates experimental colitis via modulation of gut microbiota and induction of regulatory T cells. PLoS One. 2017;12(10):e0185999.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Gazak R, Walterova D, Kren V. Silybin and silymarin-new and emerging applications in medicine. Curr Med Chem. 2007;14(3):315–38.CrossRefPubMedGoogle Scholar
  38. 38.
    Katiyar SK, Roy AM, Baliga MS. Silymarin induces apoptosis primarily through a p53-dependent pathway involving Bcl-2/Bax, cytochrome c release, and caspase activation. Mol Cancer Ther. 2005;4(2):207–16.PubMedGoogle Scholar
  39. 39.
    Zamamiri-Davis F, Lu Y, Thompson JT, Prabhu KS, Reddy PV, Sordillo LM, et al. Nuclear factor-κB mediates over-expression of cyclooxygenase-2 during activation of RAW 264.7 macrophages in selenium deficiency. Free Radic Biol Med. 2002;32(9):890–7.CrossRefPubMedGoogle Scholar
  40. 40.
    Duntas L. Selenium and inflammation: underlying anti-inflammatory mechanisms. Horm Metab Res. 2009;41(06):443–7.CrossRefPubMedGoogle Scholar
  41. 41.
    Miroliaee AE, Esmaily H, Vaziri-Bami A, Baeeri M, Shahverdi AR, Abdollahi M. Amelioration of experimental colitis by a novel nanoselenium–silymarin mixture. Toxicol Mech Methods. 2011;21(3):200–8.CrossRefPubMedGoogle Scholar
  42. 42.
    Varshosaz J, Minaiyan M, Khaleghi N. Eudragit nanoparticles loaded with silybin: a detailed study of preparation, freeze-drying condition and in vitro/in vivo evaluation. J Microencapsul. 2015;32(3):211–23.CrossRefPubMedGoogle Scholar
  43. 43.
    Brown AC, Shah C, Liu J, Pham JT, Zhang JG, Jadus MR. Ginger's (Zingiber officinale roscoe) inhibition of rat colonic adenocarcinoma cells proliferation and angiogenesis in vitro. Phytother Res. 2009;23(5):640–5.CrossRefPubMedGoogle Scholar
  44. 44.
    Grzanna R, Lindmark L, Frondoza CG. Ginger—an herbal medicinal product with broad anti-inflammatory actions. J Med Food. 2005;8(2):125–32.CrossRefPubMedGoogle Scholar
  45. 45.
    Chessa M, Caddeo C, Valenti D, Manconi M, Sinico C, Fadda AM. Effect of penetration enhancer containing vesicles on the percutaneous delivery of quercetin through new born pig skin. Pharmaceutics. 2011;3(3):497–509.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Guazelli CF, Fattori V, Colombo BB, Georgetti SR, Vicentini FT, Casagrande R, et al. Quercetin-loaded microcapsules ameliorate experimental colitis in mice by anti-inflammatory and antioxidant mechanisms. J Nat Prod. 2013;76(2):200–8.CrossRefPubMedGoogle Scholar
  47. 47.
    Caddeo C, Nácher A, Díez-Sales O, Merino-Sanjuán M, Fadda AM, Manconi M. Chitosan–xanthan gum microparticle-based oral tablet for colon-targeted and sustained delivery of quercetin. J Microencapsul. 2014;31(7):694–9.CrossRefPubMedGoogle Scholar
  48. 48.
    Ju S, Mu J, Dokland T, Zhuang X, Wang Q, Jiang H, et al. Grape exosome-like nanoparticles induce intestinal stem cells and protect mice from DSS-induced colitis. Mol Ther. 2013;21(7):1345–57.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Chitra M, Sukumar E, Suja V, Devi S. Antitumor, anti-inflammatory and analgesic property of embelin. A plant product Chemotherapy. 1994;40(2):109–13.Google Scholar
  50. 50.
    Kumar K, Dhamotharan R, Kulkarni NM, Honnegowda S, Murugesan S. Embelin ameliorates dextran sodium sulfate-induced colitis in mice. Int Immunopharmacol. 2011;11(6):724–31.CrossRefGoogle Scholar
  51. 51.
    Thippeswamy BS, Mahendran S, Biradar MI, Raj P, Srivastava K, Badami S, et al. Protective effect of embelin against acetic acid induced ulcerative colitis in rats. Eur J Pharmacol. 2011;654(1):100–5.CrossRefPubMedGoogle Scholar
  52. 52.
    Badamaranahalli SS, Kopparam M, Bhagawati ST, Durg S. Embelin lipid nanospheres for enhanced treatment of ulcerative colitis–preparation. Characterization and in vivo Evaluation. Eur J Pharm Sci. 2015;76:73–82.CrossRefPubMedGoogle Scholar
  53. 53.
    Jain A, Gupta Y, Jain SK. Perspectives of biodegradable natural polysaccharides for site-specific drug delivery to the colon. J Pharm Pharm Sci. 2007;10(1):86–128.PubMedGoogle Scholar
  54. 54.
    Zhou S, Zhang B, Liu X, Teng Z, Huan M, Yang T, et al. A new natural Angelica polysaccharide based colon-specific drug delivery system. J Pharm Sci. 2009;98(12):4756–68.CrossRefPubMedGoogle Scholar
  55. 55.
    Li Y, Fan L, Tang T, Tang Y, Xie M, Zeng X, et al. Modified apple polysaccharide prevents colitis through modulating IL-22 and IL-22BP expression. Int J Biol Macromol. 2017;103:1217–23.CrossRefPubMedGoogle Scholar
  56. 56.
    Laroui H, Wilson DS, Dalmasso G, Salaita K, Murthy N, Sitaraman SV, et al. Nanomedicine in GI. Am. J. Physiol. Gastrointest. Liver Physiol. 2011;300(3):G371–G83.CrossRefPubMedGoogle Scholar
  57. 57.
    Hardy J, Wilson C, Wood E. Drug delivery to the proximal colon. J Pharm Pharmacol. 1985;37(12):874–7.CrossRefPubMedGoogle Scholar
  58. 58.
    Adkin D, Davis S, Sparrow R, Wilding I. Colonic transit of different sized tablets in healthy subjects. J Control Release. 1993;23(2):147–56.CrossRefGoogle Scholar
  59. 59.
    Tamura A, Ozawa K, Ohya T, Tsuyama N, Eyring EM, Masujima T. Nanokinetics of drug molecule transport into a single. Cell. 2006.Google Scholar
  60. 60.
    Ensign LM, Cone R, Hanes J. Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv Drug Deliv Rev. 2012;64(6):557–70.CrossRefPubMedGoogle Scholar
  61. 61.
    Powell JJ, Faria N. Thomas-McKay E, Pele LC. Origin and fate of dietary nanoparticles and microparticles in the gastrointestinal tract. J Autoimmun. 2010;34(3):J226–J33.CrossRefPubMedGoogle Scholar
  62. 62.
    Yun Y, Cho YW, Park K. Nanoparticles for oral delivery: targeted nanoparticles with peptidic ligands for oral protein delivery. Adv Drug Deliv Rev. 2013;65(6):822–32.CrossRefPubMedGoogle Scholar
  63. 63.
    Bahadar H, Maqbool F, Niaz K, Abdollahi M. Toxicity of nanoparticles and an overview of current experimental models. Iran Biomed J. 2016;20(1):1.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Koopaei NN, Abdollahi M. Opportunities and obstacles to the development of nanopharmaceuticals for human use. In: BioMed central, vol. 24; 2016.Google Scholar
  65. 65.
    Lujan H, Sayes CM. Cytotoxicological pathways induced after nanoparticle exposure: studies of oxidative stress at the ‘nano–bio’interface. Toxicol Res. 2017;6(5):580–94.CrossRefGoogle Scholar
  66. 66.
    Mostafalou S, Mohammadi H, Ramazani A, Abdollahi M. Different biokinetics of nanomedicines linking to their toxicity; an overview. BioMed Central; 2013.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Yasamin Davatgaran Taghipour
    • 1
    • 2
    • 3
  • Roodabeh Bahramsoltani
    • 2
    • 4
  • André M. Marques
    • 5
  • Rozita Naseri
    • 6
  • Roja Rahimi
    • 4
  • Pouya Haratipour
    • 7
    • 8
  • Amin Iran Panah
    • 9
  • Mohammad Hosein Farzaei
    • 10
    • 11
  • Mohammad Abdollahi
    • 12
    • 13
  1. 1.Department of Medical Nanotechnology, School of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
  2. 2.PhytoPharmacology Interest Group (PPIG)Universal Scientific Education and Research Network (USERN)TehranIran
  3. 3.Student Research CommitteeTabriz University of Medical SciencesTabrizIran
  4. 4.Department of Pharmacy in Persian Medicine, School of Persian MedicineTehran University of Medical SciencesTehranIran
  5. 5.Oswaldo Cruz Foundation (FIOCRUZ)Institute of Technology in Pharmaceuticals (Farmanguinhos)Rio de JaneiroBrazil
  6. 6.Internal Medicine Department, Faculty of MedicineKermanshah University of Medical SciencesKermanshahIran
  7. 7.Department of ChemistrySharif University of TechnologyTehranIran
  8. 8.PhytoPharmacology Interest Group (PPIG)Universal Scientific Education and Research Network (USERN)Los AngelesUSA
  9. 9.Faculty of PharmacyKermanshah University of Medical SciencesKermanshahIran
  10. 10.Pharmaceutical Sciences Research CenterKermanshah University of Medical SciencesKermanshahIran
  11. 11.Medical Biology Research CenterKermanshah University of Medical SciencesKermanshahIran
  12. 12.Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS)Tehran University of Medical SciencesTehranIran
  13. 13.Department of Toxicology and Pharmacology, Faculty of PharmacyTehran University of Medical SciencesTehranIran

Personalised recommendations