Advertisement

Formation of nanosuspensions in bottom-up approach: theories and optimization

  • Ali Ahmadi Tehrani
  • Mohammad Mahdi Omranpoor
  • Alireza Vatanara
  • Mohammad Seyedabadi
  • Vahid RamezaniEmail author
Review Article
  • 33 Downloads

Abstract

Background

Nanosuspensions, liquid dispersions with nanometer size distribution, are becoming trendy in pharmaceutical practice to formulate poorly water-soluble drugs and to enhance their bioavailability. Generally, nanosuspensions are produced in two main approaches; top-down or bottom-up. The former is based on size-reduction of large particles via milling or high pressure homogenization. The latter is focused on the mechanisms of nucleation and particle growth.

Methods

In this review, the critical factors influencing the kinetics or dynamics of nucleation and growth are discussed. Subsequently, the mechanisms of nanosuspension instability as well as strategies for stabilization are elaborated. Furthermore, the effects of stabilizers on key parameters of instability as well as the process of choosing an appropriate stabilizer is discussed.

Results

Steric and electrostatic stabilizations or combination of them is essential for nanosuspensions formulation to prevent coagulation. Accordingly, some characteristics of stabilizers play critical role on stability and optimization of nanosuspensions; i.e., HLB and concentration. Nevertheless, after reviewing various articles, it is ascertained that each formulation requires individual selection of surfactants according to the parameters of the particle surface and the medium.

Conclusions

Based on the results, application of excipients such as stabilizers requires proper optimization of type and concentration. This implies that each formulation requires its own optimization process.

Graphical Abstract

Keywords

Nanosuspensions Bottom-up Nucleation Particle growth Electrostatic stabilization Steric hindrance 

Abbreviations

HPMC

Hydroxypropyl methyl cellulose

MC

Methylcellulose

HPC-SL

Hydroxypropyl cellulose

HPMCP 50

Hydroxypropyl methyl cellulose acetate phthalate

Tween®80

Polysorbate 80

Poloxamers

Polyoxyethylene–polyoxypropylene block copolymer

NaCMC

Sodium carboxy methyl cellulose

PVA

Polyvinylalcohol

SLS

Sodium lauryl sulfate

PVP

Polyvinylpyrrolidone

Labrasol®

CaprylocaproylPolyoxylglycerides

Span 80

Sorbitanmonooleate

Solutol

2-Hydroxyethyl-12-hydroxyoctadecanoate

Span 40

(Sorbitanmonopalmitate)

Plasdone (PVP/VA copolymer)

Polyvinylpyrrolidone-vinyl acetate copolymer

Eudragit®

Polymethacrylates

Vitamin E TPGS

Tocopherol polyethylene glycol succinate

Span 20

Sorbitanmonolaurate

Span 60

Sorbitanmonostearate

Brij® 58

Polyoxyl 20 cetyl ether

Cremophor EL

Polyoxyl 35 castor oil

Volpo 10

Polyoxyl 10 oleyl ether

Crodesta F-160

Sucrose stearate

Crodesta F-110

Sucrose stearate (and) sucrose distearate

Triton X-100

Polyethylene glycol tert-octylphenyl ether

Nomenclature

A

Crystal surface area

D

Diffusion coefficient

d

Nanoparticles diameter

d0

Nanoparticles diameter in the initial time

∆G

Gibbs free energy of a nanoparticle

kB

Boltzmann constant

R

Gas molar constant

RG

Rate of crystal growth

r

Particle radius

S

Degree of supersaturation

T

Absolute temperature

v

Molar volume

η

Viscosity

γ

Surface tension

Notes

Acknowledgements

The authors gratefully acknowledge the financial support from Shahid Sadoughi University of Medical Sciences.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Esfandi E, Ramezani V, Vatanara A, Najafabadi AR, Moghaddam SPH. Clarithromycin dissolution enhancement by preparation of aqueous nanosuspensions using sonoprecipitation technique. Iran J Pharm Res. 2014;13(3):809–18.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Verma S, Gokhale R. Burgess DJ. A comparative study of top-down and bottom-up approaches for the preparation of micro/nanosuspensions. Int J Pharm. 2009;380(1–2):216–22.CrossRefPubMedGoogle Scholar
  3. 3.
    Bolourchian N, Mahboobian MM, Dadashzadeh S. The effect of PEG molecular weights on dissolution behavior of simvastatin in solid dispersions. Iran J Pharm Res. 2013;12(Suppl):11–20.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Saeedi M, Akbari J, Morteza-Semnani K, Enayati-Fard R, Sar-Reshteh-dar S, Soleymani A. Enhancement of dissolution rate of indomethacin using liquisolid compacts. Iran J Pharm Res. 2010:25–33.Google Scholar
  5. 5.
    Lipinski C. Poor aqueous solubility—an industry wide problem in drug discovery. Am Pharm Rev. 2002;5(3):82–5.Google Scholar
  6. 6.
    Patravale VB, Date AA, Kulkarni RM. Nanosuspensions: a promising drug delivery strategy. J Pharm Pharmacol. 2004;56(7):827–40.CrossRefPubMedGoogle Scholar
  7. 7.
    Kesisoglou F, Panmai S, Wu YH. Nanosizing - Oral formulation development and biopharmaceutical evaluation. Adv Drug Deliv Rev. 2007;59(7):631–44.CrossRefPubMedGoogle Scholar
  8. 8.
    Rabinow BE. Nanosuspensions in drug delivery. Nat Rev Drug Discov. 2004;3(9):785–96.CrossRefPubMedGoogle Scholar
  9. 9.
    Jacobs C, Muller RH. Production and characterization of a budesonide nanosuspension for pulmonary administration. Pharm Res. 2002;19(2):189–94.CrossRefPubMedGoogle Scholar
  10. 10.
    Muller RH, Gohla S, Keck CM. State of the art of nanocrystals - special features, production, nanotoxicology aspects and intracellular delivery. Eur J Pharm Biopharm. 2011;78(1):1–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Mauludin R, Muller RH, Keck CM. Kinetic solubility and dissolution velocity of rutin nanocrystals. Eur J Pharm Sci. 2009;36(4–5):502–10.CrossRefPubMedGoogle Scholar
  12. 12.
    Müller RH, Akkar A. Drug nanocrystals of poorly soluble drugs. Encyclopedia of nanoscience and nanotechnology. 2. American Scientific Publishers; 2004. p. 627–38.Google Scholar
  13. 13.
    Sun J, Wang F, Sui Y, She Z, Zhai W, Wang C, et al. Effect of particle size on solubility, dissolution rate, and oral bioavailability: evaluation using coenzyme Q10 as naked nanocrystals. Int J Nanomedicine. 2012;7:5733.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Müller RH, Peters K. Nanosuspensions for the formulation of poorly soluble drugs: I. preparation by a size-reduction technique. Int J Pharm. 1998;160(2):229–37.CrossRefGoogle Scholar
  15. 15.
    Müller RH, Benita S, Böhm BH. Emulsions and nanosuspensions for the formulation of poorly soluble drugs. Boca Raton: CRC Press; 1998.Google Scholar
  16. 16.
    Müller R, Jacobs C, Kayser O. Nanosuspensions for the formulation of poorly soluble drugs. Pharmaceutical emulsions and suspensions: Second Edition, REVISED AND EXPANDED. Boca Raton: CRC Press; 2000. p. 383–407.CrossRefGoogle Scholar
  17. 17.
    Muller RH, Jacobs C, Kayser O. Nanosuspensions as particulate drug formulations in therapy rationale for development and what we can expect for the future. Adv Drug Deliv Rev. 2001;47(1):3–19.CrossRefPubMedGoogle Scholar
  18. 18.
    Müller RH, Jacobs C, Kayser O. DissoCubes‚ a novel formulation for poorly soluble and poorly bioavailable drugs. modified-release drug delivery technology. Informa Healthcare; 2002. p. 135–49.Google Scholar
  19. 19.
    Merisko-Liversidge E, Liversidge GG, Cooper ER. Nanosizing: a formulation approach for poorly-water-soluble compounds. Eur J Pharm Sci. 2003;18(2):113–20.CrossRefPubMedGoogle Scholar
  20. 20.
    Peters K, Leitzke S, Diederichs JE, Borner K, Hahn H, Muller RH, et al. Preparation of a clofazimine nanosuspension for intravenous use and evaluation of its therapeutic efficacy in murine Mycobacterium avium infection. J Antimicrob Chemother. 2000;45(1):77–83.CrossRefPubMedGoogle Scholar
  21. 21.
    Samei M, Vatanara A, Fatemi S, Najafabadi AR. Process variables in the formation of nanoparticles of megestrol acetate through rapid expansion of supercritical CO 2. J Supercrit Fluids. 2012;70:1–7.CrossRefGoogle Scholar
  22. 22.
    Sofie V, Jan V, Ludo F, Patrick A. Microcrystalline cellulose, a useful alternative for sucrose as a matrix former during freeze-drying of drug nanosuspensions–a case study with itraconazole. Eur J Pharm Biopharm. 2008;70(2):590–6.CrossRefGoogle Scholar
  23. 23.
    Lai F, Pireddu R, Corrias F, Fadda AM, Valenti D, Pini E, et al. Nanosuspension improves tretinoin photostability and delivery to the skin. Int J Pharm. 2013;458(1):104–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Möschwitzer JP. Drug nanocrystals in the commercial pharmaceutical development process. Int J Pharm. 2013;453(1):142–56.CrossRefPubMedGoogle Scholar
  25. 25.
    Moschwitzer J, Achleitner G, Pomper H, Muller RH. Development of an intravenously injectable chemically stable aqueous omeprazole formulation using nanosuspension technology. Eur J Pharm Biopharm. 2004;58(3):615–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Li M, Azad M, Dave R, Bilgili E. Nanomilling of drugs for bioavailability enhancement: a holistic formulation-process perspective. Pharmaceutics. 2016;8(2):17.CrossRefPubMedCentralGoogle Scholar
  27. 27.
    Wagener P, Lau M, Breitung-Faes S, Kwade A, Barcikowski S. Physical fabrication of colloidal ZnO nanoparticles combining wet-grinding and laser fragmentation. Applied Physics A. 2012;108(4):793–9.CrossRefGoogle Scholar
  28. 28.
    Habiba K, Makarov VI, Weiner BR, Morell G. Fabrication of nanomaterials by pulsed laser synthesis. Manufacturing Nanostructures. Manchester, UK: One Central Press; 2014.Google Scholar
  29. 29.
    Liu P. Nanocrystal formulation for poorly soluble. Drugs. 2013.Google Scholar
  30. 30.
    Loh ZH, Samanta AK, Heng PWS. Overview of milling techniques for improving the solubility of poorly water-soluble drugs. Asian Journal of Pharmaceutical Sciences. 2015;10(4):255–74.CrossRefGoogle Scholar
  31. 31.
    Huttenrauch R, Fricke S, Zielke P. Mechanical activation of pharmaceutical systems. Pharm Res. 1985;2(6):302–6.CrossRefPubMedGoogle Scholar
  32. 32.
    Verma S, Lan Y, Gokhale R, Burgess DJ. Quality by design approach to understand the process of nanosuspension preparation. Int J Pharm. 2009;377(1–2):185–98.CrossRefPubMedGoogle Scholar
  33. 33.
    Xiong R, Lu W, Li J, Wang P, Xu R, Chen T. Preparation and characterization of intravenously injectable nimodipine nanosuspension. Int J Pharm. 2008;350(1–2):338–43.CrossRefPubMedGoogle Scholar
  34. 34.
    Ghosh I, Bose S, Vippagunta R, Harmon F. Nanosuspension for improving the bioavailability of a poorly soluble drug and screening of stabilizing agents to inhibit crystal growth. Int J Pharm. 2011;409(1–2):260–8.CrossRefPubMedGoogle Scholar
  35. 35.
    Sinha B, Muller RH, Moschwitzer JP. Bottom-up approaches for preparing drug nanocrystals: formulations and factors affecting particle size. Int J Pharm. 2013;453(1):126–41.CrossRefPubMedGoogle Scholar
  36. 36.
    Chan HK, Kwok PCL. Production methods for nanodrug particles using the bottom-up approach. Adv Drug Deliv Rev. 2011;63(6):406–16.CrossRefPubMedGoogle Scholar
  37. 37.
    Date AA, Patravale VB. Current strategies for engineering drug nanoparticles. Curr Opin Colloid Interface Sci. 2004;9(3–4):222–35.CrossRefGoogle Scholar
  38. 38.
    Dirksen JA, Ring TA. Fundamentals of crystallization - kinetic effects on particle-size distributions and morphology. Chem Eng Sci. 1991;46(10):2389–427.CrossRefGoogle Scholar
  39. 39.
    Chen A, Shi Y, Yan Z, Hao H, Zhang Y, Zhong J, et al. Dosage form developments of nanosuspension drug delivery system for oral administration route. Curr Pharm Des. 2015;21(29):4355–65.CrossRefPubMedGoogle Scholar
  40. 40.
    Du J, Li X, Zhao H, Zhou Y, Wang L, Tian S, et al. Nanosuspensions of poorly water-soluble drugs prepared by bottom-up technologies. Int J Pharm. 2015;495(2):738–49.CrossRefPubMedGoogle Scholar
  41. 41.
    Shegokar R, Müller RH. Nanocrystals: industrially feasible multifunctional formulation technology for poorly soluble actives. Int J Pharm. 2010;399(1–2):129–39.CrossRefPubMedGoogle Scholar
  42. 42.
    Hu J, Ng WK, Dong Y, Shen S, Tan RB. Continuous and scalable process for water-redispersible nanoformulation of poorly aqueous soluble APIs by antisolvent precipitation and spray-drying. Int J Pharm. 2011;404(1–2):198–204.CrossRefPubMedGoogle Scholar
  43. 43.
    Quan P, Xia D, Piao H, Piao H, Shi K, Jia Y, et al. Nitrendipine nanocrystals: its preparation, characterization, and in vitro–in vivo evaluation. AAPS PharmSciTech. 2011;12(4):1136–43.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Kurakula M, El-Helw AM, Sobahi TR, Abdelaal MY. Chitosan based atorvastatin nanocrystals: effect of cationic charge on particle size, formulation stability, and in-vivo efficacy. Int J Nanomedicine. 2015;10:321–34.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Lu Y, Wang ZH, Li T, McNally H, Park K, Sturek M. Development and evaluation of transferrin-stabilized paclitaxel nanocrystal formulation. J Control Release. 2014;176:76–85.CrossRefPubMedGoogle Scholar
  46. 46.
    Lindfors L, Forssen S, Westergren J, Olsson U. Nucleation and crystal growth in supersaturated solutions of a model drug. J Colloid Interface Sci. 2008;325(2):404–13.CrossRefPubMedGoogle Scholar
  47. 47.
    Reiss H. The growth of uniform colloidal dispersions. J Chem Phys. 1951;19(4):482–7.CrossRefGoogle Scholar
  48. 48.
    LaMer VK, Dinegar RH. Theory, production and mechanism of formation of monodispersed hydrosols. J Am Chem Soc. 1950;72(11):4847–54.CrossRefGoogle Scholar
  49. 49.
    Lindfors L, Skantze P, Skantze U, Westergren J, Olsson U. Amorphous drug nanosuspensions. 3. Particle dissolution and crystal growth. Langmuir. 2007;23(19):9866–74.CrossRefPubMedGoogle Scholar
  50. 50.
    Garrick S, Lehtinen K, Zachariah M. Nanoparticle coagulation via a Navier–stokes/nodal methodology: evolution of the particle field. J Aerosol Sci. 2006;37(5):555–76.CrossRefGoogle Scholar
  51. 51.
    Huang F, Zhang HZ, Banfield JF. Two-stage crystal-growth kinetics observed during hydrothermal coarsening of nanocrystalline ZnS. Nano Lett. 2003;3(3):373–8.CrossRefGoogle Scholar
  52. 52.
    Bilecka I, Elser P, Niederberger M. Kinetic and thermodynamic aspects in the microwave-assisted synthesis of ZnO nanoparticles in benzyl alcohol. ACS Nano. 2009;3(2):467–77.CrossRefPubMedGoogle Scholar
  53. 53.
    Raghavan SL, Trividic A, Davis AF, Hadgraft J. Crystallization of hydrocortisone acetate: influence of polymers. Int J Pharm. 2001;212(2):213–21.CrossRefPubMedGoogle Scholar
  54. 54.
    Kwon SG, Hyeon T. Formation mechanisms of uniform nanocrystals via hot-injection and heat-up methods. Small. 2011;7(19):2685–702.CrossRefPubMedGoogle Scholar
  55. 55.
    Verma S, Kumar S, Gokhale R, Burgess DJ. Physical stability of nanosuspensions: investigation of the role of stabilizers on Ostwald ripening. Int J Pharm. 2011;406(1–2):145–52.CrossRefPubMedGoogle Scholar
  56. 56.
    Ribeiro C, Lee EJ, Longo E. Leite ER. A kinetic model to describe nanocrystal growth by the oriented attachment mechanism. ChemPhysChem. 2005;6(4):690–6.CrossRefPubMedGoogle Scholar
  57. 57.
    Viswanatha R, Santra PK, Dasgupta C, Sarma DD. Growth mechanism of nanocrystals in solution: ZnO, a case study. Phys Rev Lett. 2007;98(25):255501.CrossRefPubMedGoogle Scholar
  58. 58.
    Cabane H, Laporte D, Provost A. An experimental study of Ostwald ripening of olivine and plagioclase in silicate melts: implications for the growth and size of crystals in magmas. Contrib Mineral Petrol. 2005;150(1):37–53.CrossRefGoogle Scholar
  59. 59.
    Solomatov VS, Stevenson DJ. Kinetics of crystal-growth in a terrestrial Magma Ocean. Journal of Geophysical Research-Planets. 1993;98(E3):5407–18.CrossRefGoogle Scholar
  60. 60.
    Schram CJ, Smyth RJ, Taylor LS, Beaudoin SP. Understanding crystal Growth kinetics in the absence and presence of a polymer using a rotating disk apparatus. Cryst Growth Des. 2016;16(5):2640–5.CrossRefGoogle Scholar
  61. 61.
    Thanh NT, Maclean N, Mahiddine S. Mechanisms of nucleation and growth of nanoparticles in solution. Chem Rev. 2014;114(15):7610–30.CrossRefPubMedGoogle Scholar
  62. 62.
    Kashchiev D. Nucleation: basic theory with applications. Boston: Butterworth Heinemann; 2000.Google Scholar
  63. 63.
    Rosen MJ, Kunjappu JT. Surfactants and interfacial phenomena: John Wiley & Sons; 2012.Google Scholar
  64. 64.
    Lee H, Lee J. Dissolution enhancement of celecoxib via polymer-induced crystallization. J Cryst Growth. 2013;374:37–42.CrossRefGoogle Scholar
  65. 65.
    Somasundaran P, Huang L. Adsorption/aggregation of surfactants and their mixtures at solid-liquid interfaces. Adv Colloid Interf Sci. 2000;88(1–2):179–208.CrossRefGoogle Scholar
  66. 66.
    Grau MJ, Kayser O, Muller RH. Nanosuspensions of poorly soluble drugs - reproducibility of small scale production. Int J Pharm. 2000;196(2):155–9.CrossRefPubMedGoogle Scholar
  67. 67.
    Lee J. Drug nano-and microparticles processed into solid dosage forms: physical properties. J Pharm Sci. 2003;92(10):2057–68.CrossRefPubMedGoogle Scholar
  68. 68.
    Berglund KD, Przybycien TM, Tilton RD. Coadsorption of sodium dodecyl sulfate with hydrophobically modified nonionic cellulose polymers. 1. Role of polymer hydrophobic modification. Langmuir. 2003;19(7):2705–13.CrossRefGoogle Scholar
  69. 69.
    Lee J, Lee SJ, Choi JY, Yoo JY, Ahn CH. Amphiphilic amino acid copolymers as stabilizers for the preparation of nanocrystal dispersion. Eur J Pharm Sci. 2005;24(5):441–9.CrossRefPubMedGoogle Scholar
  70. 70.
    Muller RH, Jacobs C. Buparvaquone mucoadhesive nanosuspension: preparation, optimisation and long-term stability. Int J Pharm. 2002;237(1–2):151–61.CrossRefPubMedGoogle Scholar
  71. 71.
    Kronberg B, Stenius P. The effect of surface polarity on the adsorption of nonionic surfactants. I Thermodynamic considerations. J Colloid Interface Sci. 1984;102(2):410–7.CrossRefGoogle Scholar
  72. 72.
    Zheng H, Smith RK, Jun YW, Kisielowski C, Dahmen U, Alivisatos AP. Observation of single colloidal platinum nanocrystal growth trajectories. Science. 2009;324(5932):1309–12.CrossRefPubMedGoogle Scholar
  73. 73.
    Harris MT, Byers CH. Effect of solvent on the homogeneous precipitation of Titania by titanium Ethoxide hydrolysis. J Non-Cryst Solids. 1988;103(1):49–64.CrossRefGoogle Scholar
  74. 74.
    Clark MD. Growth laws for surfactant-coated nanocrystals: Ostwald ripening and size focusing. J Nanopart Res. 2014;16(2):2264.CrossRefGoogle Scholar
  75. 75.
    Burlakov V. Ostwald ripening on nanoscale. arXiv preprint arXiv:07105224. 2007.Google Scholar
  76. 76.
    Niederberger M, Colfen H. Oriented attachment and mesocrystals: non-classical crystallization mechanisms based on nanoparticle assembly. Phys Chem Chem Phys. 2006;8(28):3271–87.CrossRefPubMedGoogle Scholar
  77. 77.
    Liu Z, Wen XD, Wu XL, Gao YJ, Chen HT, Zhu J, et al. Intrinsic dipole-field-driven mesoscale crystallization of core-shell ZnO mesocrystal microspheres. J Am Chem Soc. 2009;131(26):9405–12.CrossRefPubMedGoogle Scholar
  78. 78.
    Privman VV, Goia DV, Park J, Matijevi cacute E. Mechanism of formation of monodispersed colloids by aggregation of nanosize precursors. J Colloid Interface Sci. 1999;213(1):36–45.CrossRefPubMedGoogle Scholar
  79. 79.
    Colfen H, Mann S. Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures. Angew Chem Int Ed Engl. 2003;42(21):2350–65.CrossRefPubMedGoogle Scholar
  80. 80.
    Ain-Ai A, Gupta PK. Effect of arginine hydrochloride and hydroxypropyl cellulose as stabilizers on the physical stability of high drug loading nanosuspensions of a poorly soluble compound. Int J Pharm. 2008;351(1–2):282–8.CrossRefPubMedGoogle Scholar
  81. 81.
    Dharmalingam SR, Chidambaram K, Ramamurthy S, Nadaraju S. Effects of nanosuspension and inclusion complex techniques on the in vitro protease inhibitory activity of naproxen. Braz J Pharm Sci. 2014;50(1):165–71.CrossRefGoogle Scholar
  82. 82.
    Mura P, Maestrelli F, Cirri M. Ternary systems of naproxen with hydroxypropyl-β-cyclodextrin and aminoacids. Int J Pharm. 2003;260(2):293–302.CrossRefPubMedGoogle Scholar
  83. 83.
    Sugimoto T, Shiba F, Sekiguchi T, Itoh H. Spontaneous nucleation of monodisperse silver halide particles from homogeneous gelatin solution I: silver chloride. Colloids Surf A Physicochem Eng Asp. 2000;164(2–3):183–203.CrossRefGoogle Scholar
  84. 84.
    Lifshitz IM, Slyozov VV. The kinetics of precipitation from supersaturated solid solutions. J Phys Chem Solids. 1961;19(1–2):35–50.CrossRefGoogle Scholar
  85. 85.
    Wagner C. Theorie der alterung von niederschlägen durch umlösen (Ostwald-reifung). Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie. 1961;65(7–8):581–91.Google Scholar
  86. 86.
    Papdiwal AP, Pande VV, Aher S. Investigation of effect of different stabilizers on formulation of zaltoprofen nanosuspension. Int J Pharm Sci Rev Res. 2014;27(2):244–9.Google Scholar
  87. 87.
    Lee W-R, Kim MG, Choi J-R, Park J-I, Ko SJ, Oh SJ, et al. Redox− transmetalation process as a generalized synthetic strategy for core− shell magnetic nanoparticles. J Am Chem Soc. 2005;127(46):16090–7.CrossRefPubMedGoogle Scholar
  88. 88.
    Watzky MA, Finke RG. Transition metal nanocluster formation kinetic and mechanistic studies. A new mechanism when hydrogen is the reductant: slow, continuous nucleation and fast autocatalytic surface growth. J Am Chem Soc. 1997;119(43):10382–400.CrossRefGoogle Scholar
  89. 89.
    Daebis NAO, El-Massik M, Abdelkader H. Formulation and characterization of Itraconazole Oral Nanosuspension: methyl cellulose as promising stabilizer. Ely J Pharm Res. 2015;1(1):102.Google Scholar
  90. 90.
    Xia D, Ouyang M, Wu JX, Jiang Y, Piao H, Sun S, et al. Polymer-mediated anti-solvent crystallization of nitrendipine: monodispersed spherical crystals and growth mechanism. Pharm Res. 2012;29(1):158–69.CrossRefPubMedGoogle Scholar
  91. 91.
    Peng X, Manna L, Yang W, Wickham J, Scher E, Kadavanich A, et al. Shape control of CdSe nanocrystals. Nature. 2000;404(6773):59–61.CrossRefPubMedGoogle Scholar
  92. 92.
    Peng ZA, Peng XG. Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth. J Am Chem Soc. 2002;124(13):3343–53.CrossRefPubMedGoogle Scholar
  93. 93.
    Lindfors L, Skantze P, Skantze U, Rasmusson M, Zackrisson A, Olsson U. Amorphous drug nanosuspensions. 1 Inhibition of Ostwald ripening. Langmuir. 2006;22(3):906–10.CrossRefPubMedGoogle Scholar
  94. 94.
    Lindfors L, Forssen S, Skantze P, Skantze U, Zackrisson A, Olsson U. Amorphous drug nanosuspensions. 2. Experimental determination of bulk monomer concentrations. Langmuir. 2006;22(3):911–6.CrossRefPubMedGoogle Scholar
  95. 95.
    Mullin JW. Crystallization: Butterworth-Heinemann; 2001.Google Scholar
  96. 96.
    Penn RL. Kinetics of oriented aggregation. J Phys Chem B. 2004;108(34):12707–12.CrossRefGoogle Scholar
  97. 97.
    Penn RL, Oskam G, Strathmann TJ, Searson PC, Stone AT, Veblen DR. Epitaxial assembly in aged colloids. J Phys Chem B. 2001;105(11):2177–82.CrossRefGoogle Scholar
  98. 98.
    Kulak AN, Iddon P, Li Y, Armes SP, Colfen H, Paris O, et al. Continuous structural evolution of calcium carbonate particles: a unifying model of copolymer-mediated crystallization. J Am Chem Soc. 2007;129(12):3729–36.CrossRefPubMedGoogle Scholar
  99. 99.
    Andreassen JP. Formation mechanism and morphology in precipitation of vaterite - nano aggregation or crystal growth? J Cryst Growth. 2005;274(1–2):256–64.CrossRefGoogle Scholar
  100. 100.
    Shen Q, Wei H, Wang L, Zhou Y, Zhao Y, Zhang Z, et al. Crystallization and aggregation behaviors of calcium carbonate in the presence of poly(vinylpyrrolidone) and sodium dodecyl sulfate. J Phys Chem B. 2005;109(39):18342–7.CrossRefPubMedGoogle Scholar
  101. 101.
    Sugimoto T, Dirige GE, Muramatsu A. Formation mechanism of monodisperse CdS particles from concentrated solutions of Cd-EDTA complexes. J Colloid Interface Sci. 1996;182(2):444–56.CrossRefGoogle Scholar
  102. 102.
    Ali HSM, York P, Blagden N. Preparation of hydrocortisone nanosuspension through a bottom-up nanoprecipitation technique using microfluidic reactors. Int J Pharm. 2009;375(1–2):107–13.CrossRefPubMedGoogle Scholar
  103. 103.
    Heng JY, Thielmann F, Williams DR. The effects of milling on the surface properties of form I paracetamol crystals. Pharm Res. 2006;23(8):1918–27.CrossRefPubMedGoogle Scholar
  104. 104.
    Lai F, Sinico C, Ennas G, Marongiu F, Marongiu G, Fadda AM. Diclofenac nanosuspensions: influence of preparation procedure and crystal form on drug dissolution behaviour. Int J Pharm. 2009;373(1–2):124–32.CrossRefPubMedGoogle Scholar
  105. 105.
    Dong Y, Chang YJ, Wang Q, Tong J, Zhou J. Effects of surfactants on size and structure of amylose nanoparticles prepared by precipitation. Bull Mater Sci. 2016;39(1):35–9.CrossRefGoogle Scholar
  106. 106.
    Dolenc A, Kristl J, Baumgartner S, Planinsek O. Advantages of celecoxib nanosuspension formulation and transformation into tablets. Int J Pharm. 2009;376(1–2):204–12.CrossRefPubMedGoogle Scholar
  107. 107.
    Kumar R, Siril PF. Controlling the size and morphology of griseofulvin nanoparticles using polymeric stabilizers by evaporation-assisted solvent-antisolvent interaction method. J Nanopart Res. 2015;17(6):256.CrossRefGoogle Scholar
  108. 108.
    Tran TT, Tran PH, Nguyen MN, Tran KT, Pham MN, Tran PC, et al. Amorphous isradipine nanosuspension by the sonoprecipitation method. Int J Pharm. 2014;474(1–2):146–50.CrossRefPubMedGoogle Scholar
  109. 109.
    Hecq J, Deleers M, Fanara D, Vranckx H, Amighi K. Preparation and characterization of nanocrystals for solubility and dissolution rate enhancement of nifedipine. Int J Pharm. 2005;299(1–2):167–77.CrossRefPubMedGoogle Scholar
  110. 110.
    Saindane NS, Pagar KP, Vavia PR. Nanosuspension based in situ gelling nasal spray of carvedilol: development, in vitro and in vivo characterization. AAPS PharmSciTech. 2013;14(1):189–99.CrossRefPubMedGoogle Scholar
  111. 111.
    Sato T, Takeuchi H, Sakurai T, Tanaka K, Matsuki K, Higashi K, et al. Characterization of a riboflavin non-aqueous nanosuspension prepared by bead milling for cutaneous application. Chem Pharm Bull (Tokyo). 2015;63(2):88–94.CrossRefGoogle Scholar
  112. 112.
    Chari K, Antalek B, Kowalczyk J, Eachus RS, Chen T. Polymer− surfactant interaction and stability of amorphous colloidal particles. J Phys Chem B. 1999;103(45):9867–72.CrossRefGoogle Scholar
  113. 113.
    Matteucci ME, Hotze MA, Johnston KP, Williams RO III. Drug nanoparticles by antisolvent precipitation: mixing energy versus surfactant stabilization. Langmuir. 2006;22(21):8951–9.CrossRefPubMedGoogle Scholar
  114. 114.
    Jongen N, Bowen P, Lemaitre J, Valmalette JC, Hofmann H. Precipitation of self-organized copper oxalate polycrystalline particles in the presence of hydroxypropylmethylcellulose (HPMC): control of morphology. J Colloid Interface Sci. 2000;226(2):189–98.CrossRefGoogle Scholar
  115. 115.
    Kronberg B, Lindman B. Surfactants and polymers in aqueous solution. Chichester: John Wiley & Sons Ltd.; 2003.Google Scholar
  116. 116.
    Tadros TF. Control of the properties of suspensions. Colloids Surf. 1986;18(2–4):137–73.CrossRefGoogle Scholar
  117. 117.
    Kumar MP, Rao YM, Apte S. Formulation of nanosuspensions of albendazole for oral administration. Curr Nanosci. 2008;4(1):53–8.CrossRefGoogle Scholar
  118. 118.
    Ruiz-Cabello FJ, Trefalt G, Csendes Z, Sinha P, Oncsik T, Szilagyi I, et al. Predicting aggregation rates of colloidal particles from direct force measurements. J Phys Chem B. 2013;117(39):11853–62.CrossRefPubMedGoogle Scholar
  119. 119.
    Lyklema J. Principles of the stability of lyophobic colloidal dispersions in non-aqueous media. Adv Colloid Interf Sci. 1968;2(2):67–114.CrossRefGoogle Scholar
  120. 120.
    Zhao YX, Hua HY, Chang M, Liu WJ, Zhao Y, Liu HM. Preparation and cytotoxic activity of hydroxycamptothecin nanosuspensions. Int J Pharm. 2010;392(1–2):64–71.CrossRefPubMedGoogle Scholar
  121. 121.
    Van Eerdenbrugh B, Vermant J, Martens JA, Froyen L, Van Humbeeck J, Augustijns P, et al. A screening study of surface stabilization during the production of drug nanocrystals. J Pharm Sci. 2009;98(6):2091–103.CrossRefPubMedGoogle Scholar
  122. 122.
    Singare DS, Giriraj TK, Gowthamrajan K. Nanosuspension solidification technique: evaluation of high shear granulation as per industrial perspective.Google Scholar
  123. 123.
    Van Eerdenbrugh B, Van den Mooter G, Augustijns P. Top-down production of drug nanocrystals: nanosuspension stabilization, miniaturization and transformation into solid products. Int J Pharm. 2008;364(1):64–75.CrossRefPubMedGoogle Scholar
  124. 124.
    Jacobs C, Kayser O, Muller RH. Nanosuspensions as a new approach for the formulation for the poorly soluble drug tarazepide. Int J Pharm. 2000;196(2):161–4.CrossRefPubMedGoogle Scholar
  125. 125.
    Müller RH, Hildebrand GE. Zetapotential und Partikelladung in der Laborpraxis(Einführung in die Theorie praktische Messdurchführung Dateninterpretation). Paperback APV; 1996.Google Scholar
  126. 126.
    Freitas C, Muller RH. Effect of light and temperature on zeta potential and physical stability in solid lipid nanoparticle (SLN (TM)) dispersions. Int J Pharm. 1998;168(2):221–9.CrossRefGoogle Scholar
  127. 127.
    Manciu M, Ruckenstein E. Role of the hydration force in the stability of colloids at high ionic strengths. Langmuir. 2001;17(22):7061–70.CrossRefGoogle Scholar
  128. 128.
    Van der Hoeven PC, Lyklema J. Electrostatic stabilization in non-aqueous media. Adv Colloid Interf Sci. 1992;42:205–77.CrossRefGoogle Scholar
  129. 129.
    Tuomela A, Hirvonen J, Peltonen L. Stabilizing agents for drug nanocrystals: effect on bioavailability. Pharmaceutics. 2016;8(2):16.CrossRefPubMedCentralGoogle Scholar
  130. 130.
    George M, Ghosh I. Identifying the correlation between drug/stabilizer properties and critical quality attributes (CQAs) of nanosuspension formulation prepared by wet media milling technology. Eur J Pharm Sci. 2013;48(1–2):142–52.CrossRefPubMedGoogle Scholar
  131. 131.
    Peltonen L, Hirvonen J. Pharmaceutical nanocrystals by nanomilling: critical process parameters, particle fracturing and stabilization methods. J Pharm Pharmacol. 2010;62(11):1569–79.CrossRefPubMedGoogle Scholar
  132. 132.
    Zhang H, Hollis CP, Zhang Q, Li T. Preparation and antitumor study of camptothecin nanocrystals. Int J Pharm. 2011;415(1–2):293–300.CrossRefPubMedGoogle Scholar
  133. 133.
    Attard P, Antelmi D, Larson I. Comparison of the zeta potential with the diffuse layer potential from charge titration. Langmuir. 2000;16(4):1542–52.CrossRefGoogle Scholar
  134. 134.
    Bourikas K, Stylidi M, Kondarides DI, Verykios XE. Adsorption of acid orange 7 on the surface of titanium dioxide. Langmuir. 2005;21(20):9222–30.CrossRefPubMedGoogle Scholar
  135. 135.
    Kim TH, Choi SM, Kline SR. Polymerized rodlike nanoparticles with controlled surface charge density. Langmuir. 2006;22(6):2844–50.CrossRefPubMedGoogle Scholar
  136. 136.
    Liao D, Wu G, Liao B. Zeta potential of shape-controlled TiO 2 nanoparticles with surfactants. Colloids Surf A Physicochem Eng Asp. 2009;348(1):270–5.CrossRefGoogle Scholar
  137. 137.
    Tanaka Y, Inkyo M, Yumoto R, Nagai J, Takano M, Nagata S. Nanoparticulation of poorly water soluble drugs using a wet-mill process and physicochemical properties of the nanopowders. Chem Pharm Bull. 2009;57(10):1050–7.CrossRefPubMedGoogle Scholar
  138. 138.
    Raghavan SL, Schuessel K, Davis A, Hadgraft J. Formation and stabilisation of triclosan colloidal suspensions using supersaturated systems. Int J Pharm. 2003;261(1–2):153–8.CrossRefPubMedGoogle Scholar
  139. 139.
    Ziller KH, Rupprecht HH. Control of crystal-Growth in drug suspensions .2. Influence of polymers on dissolution and crystallization during temperature cycling. Pharmazeutische Industrie. 1990;52(8):1017–22.Google Scholar
  140. 140.
    Teeranachaideekul V, Junyaprasert VB, Souto EB, Muller RH. Development of ascorbyl palmitate nanocrystals applying the nanosuspension technology. Int J Pharm. 2008;354(1–2):227–34.CrossRefPubMedGoogle Scholar
  141. 141.
    Choi JY, Yoo JY, Kwak HS, Nam BU, Lee J. Role of polymeric stabilizers for drug nanocrystal dispersions. Curr Appl Phys. 2005;5(5):472–4.CrossRefGoogle Scholar
  142. 142.
    Walstra P. Formation of emulsions. 1983.Google Scholar
  143. 143.
    Müller RH. Colloidal carriers for controlled drug delivery and targeting: modification, characterization and in vivo distribution. London: Taylor & Francis; 1991.Google Scholar
  144. 144.
    Liu P, Rong X, Laru J, van Veen B, Kiesvaara J, Hirvonen J, et al. Nanosuspensions of poorly soluble drugs: preparation and development by wet milling. Int J Pharm. 2011;411(1–2):215–22.CrossRefPubMedGoogle Scholar
  145. 145.
    Wegner G, Baum P, Müller M, Norwig J, Landfester K (eds). Polymers designed to control nucleation and growth of inorganic crystals from aqueous media. Macromolecular Symposia. Wiley Online Library; 2001.Google Scholar
  146. 146.
    Shenoy DB, Sukhorukov GB. Engineered microcrystals for direct surface modification with layer-by-layer technique for optimized dissolution. Eur J Pharm Biopharm. 2004;58(3):521–7.CrossRefPubMedGoogle Scholar
  147. 147.
    Giermanska-Kahn J, Schmitt V, Binks BP. Leal-Calderon F. A new method to prepare monodisperse Pickering emulsions. Langmuir. 2002;18(7):2515–8.CrossRefGoogle Scholar
  148. 148.
    Keck CM, Muller RH. Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. Eur J Pharm Biopharm. 2006;62(1):3–16.CrossRefPubMedGoogle Scholar
  149. 149.
    Zimmermann E, Muller RH. Electrolyte- and pH-stabilities of aqueous solid lipid nanoparticle (SLN (TM)) dispersions in artificial gastrointestinal media. Eur J Pharm Biopharm. 2001;52(2):203–10.CrossRefPubMedGoogle Scholar
  150. 150.
    Einarson MB, Berg JC. Electrosteric stabilization of colloidal latex dispersions. J Colloid Interface Sci. 1993;155(1):165–72.CrossRefGoogle Scholar
  151. 151.
    Shete G, Jain H, Punj D, Prajapat H, Akotiya P, Bansal AK. Stabilizers used in nanocrystal based drug delivery systems. Journal of Excipients and Food Chemicals. 2014;5(4):184–209.Google Scholar
  152. 152.
    Verma S, Huey BD, Burgess DJ. Scanning probe microscopy method for nanosuspension stabilizer selection. Langmuir. 2009;25(21):12481–7.CrossRefPubMedGoogle Scholar
  153. 153.
    Jiang T, Han N, Zhao B, Xie Y, Wang S. Enhanced dissolution rate and oral bioavailability of simvastatin nanocrystal prepared by sonoprecipitation. Drug Dev Ind Pharm. 2012;38(10):1230–9.CrossRefPubMedGoogle Scholar
  154. 154.
    Berglund KD, Przybycien TM, Tilton RD. Coadsorption of sodium dodecyl sulfate with hydrophobically modified nonionic cellulose polymers. 2. Role of surface selectivity in adsorption hysteresis. Langmuir. 2003;19(7):2714–21.CrossRefGoogle Scholar
  155. 155.
    Tanvir S, Qiao L. Surface tension of Nanofluid-type fuels containing suspended nanomaterials. Nanoscale Res Lett. 2012;7(1):226.CrossRefPubMedPubMedCentralGoogle Scholar
  156. 156.
    Jackson KA. Kinetic Processes: Crystal Growth, Diffusion, and phase transformations in materials. Hoboken: Wiley; 2006.Google Scholar
  157. 157.
    Wong EM, Bonevich JE, Searson PC. Growth kinetics of nanocrystalline ZnO particles from colloidal suspensions. J Phys Chem B. 1998;102(40):7770–5.CrossRefGoogle Scholar
  158. 158.
    Oskam G, Nellore A, Penn RL, Searson PC. The growth kinetics of TiO2 nanoparticles from titanium(IV) alkoxide at high water/titanium ratio. J Phys Chem B. 2003;107(8):1734–8.CrossRefGoogle Scholar
  159. 159.
    Dalvi SV, Dave RN. Controlling particle size of a poorly water-soluble drug using ultrasound and stabilizers in antisolvent precipitation. Ind Eng Chem Res. 2009;48(16):7581–93.CrossRefGoogle Scholar
  160. 160.
    Monnier H, Wilhelm AM, Delmas H. Influence of ultrasound on mixing on the molecular scale for water and viscous liquids. Ultrason Sonochem. 1999;6(1–2):67–74.CrossRefPubMedGoogle Scholar
  161. 161.
    O'Connor SM, Gehrke SH. Synthesis and characterization of thermally-responsive hydroxypropyl methylcellulose gel beads. J Appl Polym Sci. 1997;66(7):1279–90.CrossRefGoogle Scholar
  162. 162.
    Zhang ZP, Tan SW, Feng SS. Vitamin E TPGS as a molecular biomaterial for drug delivery. Biomaterials. 2012;33(19):4889–906.CrossRefPubMedGoogle Scholar
  163. 163.
    Shanbhag A, Rabel S, Nauka E, Casadevall G, Shivanand P, Eichenbaum G, et al. Method for screening of solid dispersion formulations of low-solubility compounds - miniaturization and automation of solvent casting and dissolution testing. Int J Pharm. 2008;351(1–2):209–18.CrossRefPubMedGoogle Scholar
  164. 164.
    McClements DJ. Protein-stabilized emulsions. Curr Opin Colloid Interface Sci. 2004;9(5):305–13.CrossRefGoogle Scholar
  165. 165.
    Jeyachandran YL, Mielczarski E, Rai B, Mielczarski JA. Quantitative and qualitative evaluation of adsorption/desorption of bovine serum albumin on hydrophilic and hydrophobic surfaces. Langmuir. 2009;25(19):11614–20.CrossRefPubMedGoogle Scholar
  166. 166.
    Seo JH, Dembereldorj U, Park J, Kim M, Kim S, Joo SW. Facile internalization of paclitaxel on titania nanoparticles in human lung carcinoma cells after adsorption of serum proteins. J Nanopart Res. 2012;14(10):1–8.CrossRefGoogle Scholar
  167. 167.
    Niwa T, Danjo K. Design of self-dispersible dry nanosuspension through wet milling and spray freeze-drying for poorly water-soluble drugs. Eur J Pharm Sci. 2013;50(3–4):272–81.CrossRefPubMedGoogle Scholar
  168. 168.
    Pongpeerapat A, Wanawongthai C, Tozuka Y, Moribe K, Yamamoto K. Formation mechanism of colloidal nanoparticles obtained from probucol/PVP/SDS ternary ground mixture. Int J Pharm. 2008;352(1–2):309–16.CrossRefPubMedGoogle Scholar
  169. 169.
    Mou D, Chen H, Wan J, Xu H, Yang X. Potent dried drug nanosuspensions for oral bioavailability enhancement of poorly soluble drugs with pH-dependent solubility. Int J Pharm. 2011;413(1–2):237–44.CrossRefPubMedGoogle Scholar
  170. 170.
    Gao L, Liu G, Ma J, Wang X, Wang F, Wang H, et al. Paclitaxel nanosuspension coated with P-gp inhibitory surfactants: II. Ability to reverse the drug-resistance of H460 human lung cancer cells. Colloids Surf B: Biointerfaces. 2014;117:122–7.CrossRefPubMedGoogle Scholar
  171. 171.
    Rowe RC, Sheskey PJ, Weller PJ. Handbook of pharmaceutical excipients. London: Pharmaceutical press; 2006.Google Scholar
  172. 172.
    Rajebahadur M, Zia H, Nues A, Lee C. Mechanistic study of solubility enhancement of nifedipine using vitamin E TPGS or solutol HS-15. Drug Deliv. 2006;13(3):201–6.CrossRefPubMedGoogle Scholar
  173. 173.
    Delongeas JL, de Conchard GV, Beamonte A, Bertheux H, Spire C, Maisonneuve C, et al. Assessment of Labrasol (R)/Labrafil (R)/Transcutol (R) (4/4/2, v/v/v) as a non-clinical vehicle for poorly water-soluble compounds after 4-week oral toxicity study in Wistar rats. Regul Toxicol Pharmacol. 2010;57(2–3):284–90.CrossRefPubMedGoogle Scholar
  174. 174.
    Adamson AW, Gast AP. Physical chemistry of surfaces. 1967.Google Scholar
  175. 175.
    Ghosh I, Schenck D, Bose S, Ruegger C. Optimization of formulation and process parameters for the production of nanosuspension by wet media milling technique: effect of vitamin E TPGS and nanocrystal particle size on oral absorption. Eur J Pharm Sci. 2012;47(4):718–28.CrossRefPubMedGoogle Scholar
  176. 176.
    Dalvi SV, Dave RN. Analysis of nucleation kinetics of poorly water-soluble drugs in presence of ultrasound and hydroxypropyl methyl cellulose during antisolvent precipitation. Int J Pharm. 2010;387(1–2):172–9.CrossRefPubMedGoogle Scholar
  177. 177.
    Obeidat WM, Sallam A-SA. Evaluation of tadalafil nanosuspensions and their PEG solid dispersion matrices for enhancing its dissolution properties. AAPS PharmSciTech. 2014;15(2):364–74.CrossRefPubMedPubMedCentralGoogle Scholar
  178. 178.
    Romero-Cano MS, Martin-Rodriguez A, de las Nieves FJ. Electrosteric stabilization of polymer colloids with different functionality. Langmuir. 2001;17(11):3505–11.CrossRefGoogle Scholar
  179. 179.
    Don TM, Hsu SC, Chiu WY. Structures and thermal properties of chitosan-modified poly (methyl methacrylate). J Polym Sci A Polym Chem. 2001;39(10):1646–55.CrossRefGoogle Scholar
  180. 180.
    Niwa T, Miura S, Danjo K. Universal wet-milling technique to prepare oral nanosuspension focused on discovery and preclinical animal studies - development of particle design method. Int J Pharm. 2011;405(1–2):218–27.CrossRefGoogle Scholar
  181. 181.
    Detroja C, Chavhan S, Sawant K. Enhanced antihypertensive activity of candesartan cilexetil nanosuspension: formulation, characterization and pharmacodynamic study. Sci Pharm. 2011;79(3):635–51.CrossRefPubMedPubMedCentralGoogle Scholar
  182. 182.
    Chen XX, Young TJ, Sarkari M, Williams RO, Johnston KP. Preparation of cyclosporine A nanoparticles by evaporative precipitation into aqueous solution. Int J Pharm. 2002;242(1–2):3–14.CrossRefPubMedGoogle Scholar
  183. 183.
    Sarkari M, Brown J, Chen XX, Swinnea S, Williams RO, Johnston KP. Enhanced drug dissolution using evaporative precipitation into aqueous solution. Int J Pharm. 2002;243(1–2):17–31.CrossRefPubMedGoogle Scholar
  184. 184.
    Abdelwahed W, Degobert G, Fessi H. Investigation of nanocapsules stabilization by amorphous excipients during freeze-drying and storage. Eur J Pharm Biopharm. 2006;63(2):87–94.CrossRefPubMedGoogle Scholar
  185. 185.
    Elham G, Mahsa P, Vatanara A, Vahid R. Spray drying of nanoparticles to form fast dissolving glipizide. Asian Journal of Pharmaceutics. 2015;9(3):213–8.CrossRefGoogle Scholar
  186. 186.
    Chasteigner Sd CG, Fessi H, Devissaguet J-P, Puisieux F. Freeze-drying of itraconazole-loaded nanosphere suspensions: a feasibility study. Drug Dev Res. 1996;38(2):116–24.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Pharmaceutics, Faculty of PharmacyShahid Sadoughi University of Medical SciencesYazdIran
  2. 2.Pharmaceutical Research CenterShahid Sadoughi University of Medical SciencesYazdIran
  3. 3.Department of Pharmaceutics, Faculty of PharmacyTehran University of Medical SciencesTehranIran
  4. 4.Department of Pharmacology, School of MedicineBushehr University of Medical SciencesBushehrIran

Personalised recommendations