Advertisement

Effects of Ti and Cu on the Microstructure Evolution of AlCoCrFeNi High-Entropy Alloy During Heat Treatment

  • Yuan Yu
  • Peiying Shi
  • Kai Feng
  • Jiongjie Liu
  • Jun Cheng
  • Zhuhui QiaoEmail author
  • Jun Yang
  • Jinshan LiEmail author
  • Weimin Liu
Article
  • 14 Downloads

Abstract

The microstructure evolution of AlCoCrFeNiTi0.5 alloy and AlCoCrFeNiCu alloy during heat treatment was systematically studied, to reveal the influence rules of chemical activity of adding element on the microstructure evolution of AlCoCrFeNi system. Owing to the negative mixing enthalpy with the constituent elements, Ti element was mainly dissolved in the Al–Ni-rich phases, and aggravated the lattice distortion of B2 phase. The structure variation of BCC phase by adding Ti inhibited the formation of FCC phase and enhanced the precipitation of σ phase during heat treatment. Owing to the positive mixing enthalpy with constituent elements, Cu element tended to be repelled to the ID region and formed metastable Cu-rich FCC1 phase which would transform into Cu–Al–Ni-rich FCC2 phase with increasing temperature. The addition of Cu inhibited the precipitation of σ phase during heat treatment. Adding Ti maintained the stable dendritic morphology, while adding Cu reduced the thermal stability of microstructure. Two dramatic morphology changes occurred at 1000 °C and 1100 °C in the AlCoCrFeNiCu alloy. The lattice distortion of phase in AlCoCrFeNiTi0.5 alloy was aggravated with increasing temperature up to 800 °C, then relaxed together with the dissolution of σ phase when temperature was above 900 °C. The variation in lattice distortion dominated the hardness of AlCoCrFeNiTi0.5 alloy. With increasing heating temperature, the increasing volume fraction of region with FCC structure due to the transformation between FCC phases, and the pronounced coarsening in microstructure due to the reduced thermal stability, resulted in the mainly decreasing trend in the hardness of AlCoCrFeNiCu alloy.

Keywords

High-entropy alloy Heat treatment Microstructure evolution Enthalpy Hardness 

Notes

Acknowledgements

This work was financially supported by the National Key R&D Program of China (No. 2018YFB2000100) and the National Natural Science Foundation of China (Nos. 51701227 and 51775532); one of the authors (Zhuhui Qiao) appreciates the support of the Taishan scholars Program of Shandong Province and the Outstanding Talents of Qingdao Innovations.

References

  1. [1]
    Z. Li, S. Zhao, R.O. Ritchie, M.A. Meyers, Prog. Mater. Sci. 102, 296 (2019)CrossRefGoogle Scholar
  2. [2]
    Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y. Yang, Mater. Today 19, 349 (2016)CrossRefGoogle Scholar
  3. [3]
    H. Zhang, B. Dou, H. Tang, Y. He, S. Guo, Mater. Des. 159, 224 (2018)CrossRefGoogle Scholar
  4. [4]
    Y.L. Zhang, J.G. Li, X.G. Wang, Y.P. Lu, Y.Z. Zhou, X.F. Sun, J. Mater. Sci. Technol. 35, 902 (2019)CrossRefGoogle Scholar
  5. [5]
    Y.P. Lu, H.F. Huang, X.Z. Gao, C.L. Ren, J. Gaob, H.Z. Zhang, S.J. Zheng, Q.Q. Jin, Y.H. Zhao, C.Y. Lu, T.M. Wang, T.J. Li, J. Mater. Sci. Technol. 35, 369 (2019)CrossRefGoogle Scholar
  6. [6]
    C. Xiang, Z.M. Zhang, H.M. Fu, E.H. Han, J.Q. Wang, H.F. Zhang, G.D. Hu, Acta Metall. Sin. (Engl. Lett.) 32, 1053 (2019)CrossRefGoogle Scholar
  7. [7]
    M.H. Tsai, J.W. Yeh, Mater. Res. Lett. 2, 107 (2014)CrossRefGoogle Scholar
  8. [8]
    S. Chen, K.K. Tseng, Y. Tong, W. Li, C.W. Tsai, J.W. Yeh, P.K. Liaw, J. Alloy. Compd. 795, 19 (2019)CrossRefGoogle Scholar
  9. [9]
    Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Prog. Mater. Sci. 61, 1 (2014)CrossRefGoogle Scholar
  10. [10]
    T.T. Zuo, M.C. Gao, L.Z. Ouyang, X. Yang, Y.Q. Cheng, R. Feng, S.Y. Chen, P.K. Liaw, J.A. Hawk, Y. Zhang, Acta Mater. 130, 10 (2017)CrossRefGoogle Scholar
  11. [11]
    Y.P. Lu, H. Jiang, S. Guo, T.M. Wang, Z.Q. Cao, T.J. Li, Intermetallics 91, 124 (2017)CrossRefGoogle Scholar
  12. [12]
    L. Jiang, Y.P. Lu, M. Song, C. Lu, K. Sun, Z.Q. Cao, T.M. Wang, F. Gao, L.M. Wang, Scr. Mater. 165, 128 (2019)CrossRefGoogle Scholar
  13. [13]
    D.X. Qiao, H. Jiang, W.N. Jiao, Y.P. Lu, Z.Q. Cao, T.J. Li, Acta Metall. Sin. (Engl. Lett.) 32, 925 (2019)CrossRefGoogle Scholar
  14. [14]
    J.B. Cheng, D. Liu, X.B. Liang, B.S. Xu, Acta Metall. Sin. Engl. Lett. 27, 1031 (2014)CrossRefGoogle Scholar
  15. [15]
    L.M. Du, L.W. Lan, S. Zhu, H.J. Yang, X.H. Shi, P.K. Liaw, J.W. Qiao, J. Mater. Sci. Technol. 35, 917 (2019)CrossRefGoogle Scholar
  16. [16]
    Y. Yu, J. Wang, J.S. Li, J. Yang, H.C. Kou, W.M. Liu, J. Mater. Sci. Technol. 32, 470 (2016)CrossRefGoogle Scholar
  17. [17]
    E.P. George, D. Raabe, R.O. Ritchie, Nat. Rev. Mater. 4, 515 (2019)CrossRefGoogle Scholar
  18. [18]
    Z.M. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Nature 534, 227 (2016)CrossRefGoogle Scholar
  19. [19]
    B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345, 1153 (2014)CrossRefGoogle Scholar
  20. [20]
    Y.P. Lu, Y. Dong, S. Guo, L. Jiang, H.J. Kang, T.M. Wang, B. Wen, Z.J. Wang, J.C. Jie, Z.Q. Cao, H.H. Ruan, T.J. Li, Sci. Rep. 4, 5 (2014)Google Scholar
  21. [21]
    Y. Lu, X. Gao, L. Jiang, Z. Chen, T. Wang, J. Jie, H. Kang, Y. Zhang, S. Guo, H. Ruan, Y. Zhao, Z. Cao, T. Li, Acta Mater. 124, 143 (2017)CrossRefGoogle Scholar
  22. [22]
    X.Z. Gao, Y.P. Lu, B. Zhang, N.N. Liang, G.Z. Wu, G. Sha, J.Z. Liu, Y.H. Zhao, Acta Mater. 141, 59 (2017)CrossRefGoogle Scholar
  23. [23]
    Y.P. Lu, X.X. Gao, Y. Dong, T.M. Wang, H.L. Chen, H.H. Mao, Y.H. Zhao, H. Jiang, Z.Q. Cao, T.J. Li, S. Guo, Nanoscale 10, 1912 (2018)CrossRefGoogle Scholar
  24. [24]
    J. Hou, X. Shi, J. Qiao, Y. Zhang, P.K. Liaw, Y. Wu, Mater. Des. 180, 107910 (2019)CrossRefGoogle Scholar
  25. [25]
    Y.J. Zhou, Y. Zhang, Y.L. Wang, G.L. Chen, Appl. Phys. Lett. 90, 18 (2007)Google Scholar
  26. [26]
    C.J. Tong, M.R. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, S.J. Lin, S.Y. Chang, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 36a, 1263 (2005)CrossRefGoogle Scholar
  27. [27]
    Z.J.W.X.L. Shang, Q.F. Wu, J.C. Wang, J.J. Li, J.K. Yu, Acta Metall. Sin. (Engl. Lett.) 32, 41 (2019)CrossRefGoogle Scholar
  28. [28]
    Y.T. Wang, J.B. Li, Y.C. Xin, X.H. Chen, M. Rashad, B. Liu, Y. Liu, Acta Metall. Sin. (Engl. Lett.) 32, 932 (2019)CrossRefGoogle Scholar
  29. [29]
    T.D. Huang, H. Jiang, Y.P. Lu, T.M. Wang, T.J. Li, Appl. Phys. A-Mater. 125, 180 (2019)CrossRefGoogle Scholar
  30. [30]
    A. Munitz, S. Salhov, G. Guttmann, N. Derimow, M. Nahmany, Mater. Sci. Eng. A 742, 1 (2019)CrossRefGoogle Scholar
  31. [31]
    J.C. Rao, H.Y. Diao, V. Ocelik, D. Vainchtein, C. Zhang, C. Kuo, Z. Tang, W. Guo, J.D. Poplawsky, Y. Zhou, P.K. Liaw, J.T.M. De Hosson, Acta Mater. 131, 206 (2017)CrossRefGoogle Scholar
  32. [32]
    A. Verma, P. Tarate, A.C. Abhyankar, M.R. Mohape, D.S. Gowtam, V.P. Deshmukh, T. Shanmugasundaram, Scr. Mater. 161, 28 (2019)CrossRefGoogle Scholar
  33. [33]
    Z.W. Yuan, W.B. Tian, F.G. Li, Q.Q. Fu, Y.B. Hu, X.G. Wang, J. Alloy. Compd. 806, 901 (2019)CrossRefGoogle Scholar
  34. [34]
    Y. Yu, J. Wang, J. Yang, Z.H. Qiao, H.T. Duan, J.S. Li, J. Li, W.M. Liu, Tribol. Int. 131, 24 (2019)CrossRefGoogle Scholar
  35. [35]
    Y. Yu, J. Wang, J.S. Li, H.C. Kou, W.M. Liu, Mater. Lett. 138, 78 (2015)CrossRefGoogle Scholar
  36. [36]
    M. Chen, L. Lan, X.H. Shi, H.J. Yang, M. Zhang, J.W. Qiao, J. Alloy. Compd. 777, 180 (2019)CrossRefGoogle Scholar
  37. [37]
    A. Munitz, S. Salhov, S. Hayun, N. Frage, J. Alloy. Compd. 683, 221 (2016)CrossRefGoogle Scholar
  38. [38]
    K.Y. Tsai, M.H. Tsai, J.W. Yeh, Acta Mater. 61, 4487 (2013)CrossRefGoogle Scholar
  39. [39]
    A. Karati, M. Nagini, S. Ghosh, R. Shabadi, K.G. Pradeep, R.C. Mallik, B.S. Murty, U.V. Varadaraju, Sci. Rep. 9, 5331 (2019)CrossRefGoogle Scholar
  40. [40]
    B.S. Murty, J.W. Yeh, S. Ranganathan, High Entropy Alloys, 1st edn. (Butterworth-Heinemann, Boston, 2014)Google Scholar
  41. [41]
    F.J. Wang, Y. Zhang, G.L. Chen, J. Alloy. Compd. 478, 321 (2009)CrossRefGoogle Scholar
  42. [42]
    C. Lee, G. Song, M.C. Gao, R. Feng, P. Chen, J. Brechtl, Y. Chen, K. An, W. Guo, J.D. Poplawsky, S. Li, A.T. Samaei, W. Chen, A. Hu, H. Choo, P.K. Liaw, Acta Mater. 160, 158 (2018)CrossRefGoogle Scholar
  43. [43]
    S. Singh, N. Wanderka, B.S. Murty, U. Glatzel, J. Banhart, Acta Mater. 59, 182 (2011)CrossRefGoogle Scholar
  44. [44]
    A. Munitz, M.J. Kaufman, M. Nahmany, N. Derimow, R. Abbaschian, Mater. Sci. Eng. A 714, 146 (2018)CrossRefGoogle Scholar
  45. [45]
    D.Y. Shih, C.A. Chang, J. Paraszczak, S. Nunes, J. Cataldo, J. Appl. Phys. 70, 3052 (1991)CrossRefGoogle Scholar
  46. [46]
    A. Takeuchi, A. Inoue, Mater. Trans. 46, 2817 (2005)CrossRefGoogle Scholar
  47. [47]
    Y.J. Zhou, Y. Zhang, T.N. Kim, G.L. Chen, Mater. Lett. 62, 2673 (2008)CrossRefGoogle Scholar
  48. [48]
    J.M. Zhu, J.L. Meng, J.L. Liang, Rare Met 35, 385 (2016)CrossRefGoogle Scholar
  49. [49]
    Y.J. Zhou, Y. Zhang, F.J. Wang, Y.L. Wang, G.L. Chen, J. Alloy. Compd. 466, 201 (2008)CrossRefGoogle Scholar
  50. [50]
    A. Munitz, M.J. Kaufman, M. Nahmany, N. Derimow, R. Abbaschian, Metall. Mater. Trans. A 714, 146 (2018)Google Scholar
  51. [51]
    S. Liu, M.C. Gao, P.K. Liaw, Y. Zhang, J. Alloy Compd. 619, 610 (2015)CrossRefGoogle Scholar
  52. [52]
    S.Q. Xia, M.C. Gao, Y. Zhang, Mater. Chem. Phys. 210, 213 (2018)CrossRefGoogle Scholar
  53. [53]
    D. Li, Y. Zhang, Intermetallics 70, 24 (2016)CrossRefGoogle Scholar
  54. [54]
    D. Li, M.C. Gao, J.A. Hawk, Y. Zhang, J. Alloy. Compd. 778, 23 (2019)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • Yuan Yu
    • 1
    • 2
  • Peiying Shi
    • 1
  • Kai Feng
    • 3
  • Jiongjie Liu
    • 1
  • Jun Cheng
    • 1
  • Zhuhui Qiao
    • 1
    • 2
    Email author
  • Jun Yang
    • 1
  • Jinshan Li
    • 4
    Email author
  • Weimin Liu
    • 1
  1. 1.State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhouChina
  2. 2.Qingdao Center of Resource Chemistry and New MaterialsQingdaoChina
  3. 3.State Key Laboratory of Advanced Design and Manufacturing for Vehicle BodyHunan UniversityChangshaChina
  4. 4.State Key Laboratory of Solidification ProcessingNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations