Advertisement

Nano-SnO2 Decorated Carbon Cloth as Flexible, Self-supporting and Additive-Free Anode for Sodium/Lithium-Ion Batteries

  • Xu Yang
  • Ying-Ying Wang
  • Bao-Hua Hou
  • Hao-Jie Liang
  • Xin-Xin Zhao
  • Haosen FanEmail author
  • Guang WangEmail author
  • Xing-Long WuEmail author
Article
  • 11 Downloads

Abstract

In this study, nano-sized SnO2 decorated on carbon cloth (SnO2/CC) is prepared through a simple and facile solid method. The nano-sized SnO2 is uniformly distributed on the surface of carbon fibers in carbon cloth, providing sufficient free space to relieve volume expansion and reduce electrode pulverization during cycling. The as-prepared SnO2/CC as a flexible, self-supporting and additive-free anode electrode for sodium-ion/lithium-ion batteries (SIBs/LIBs) can demonstrate outstanding electrochemical performance. SnO2/CC after annealing at 350 °C (SC-350) as an anode for SIBs can deliver a reversible capacity of 0.587 mA h cm−2 at the current density of 0.3 mA cm−2 after 100 cycles. In addition, when cycling at 1.5 mA cm−2, SC-350 can maintain 1.69 mA h cm−2 after 500 cycles when used as LIB anode. These results illustrate that the as-prepared SnO2/CC can be a promising flexible anode material for flexible SIBs/LIBs and provide a simple and practical method for designing new flexible electrode materials.

Keywords

Flexible carbon cloth SnO2 coating Sodium/lithium-ion batteries 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 91963118) and the Fundamental Research Funds for the Central Universities (No. 2412019ZD010).

Supplementary material

40195_2020_1001_MOESM1_ESM.docx (43 mb)
Supplementary material 1 (DOCX 44037 kb)

References

  1. [1]
    H. Cha, Y. Lee, J. Kim, M. Park, J. Cho, Adv. Energy Mater. 8, 1801917 (2018)CrossRefGoogle Scholar
  2. [2]
    Z. Zhang, M. Liao, H. Lou, Y. Hu, X. Sun, H. Peng, Adv. Mater. 30, 1704261 (2018)CrossRefGoogle Scholar
  3. [3]
    G. Zhou, F. Li, H.-M. Cheng, Energy Environ. Sci. 7, 1307 (2014)CrossRefGoogle Scholar
  4. [4]
    Y. He, B. Matthews, J. Wang, L. Song, X. Wang, G. Wu, J. Mater. Chem. A 6, 735 (2018)CrossRefGoogle Scholar
  5. [5]
    M. Feng, S. Wang, Y. Yu, Q. Feng, J. Yang, B. Zhang, Appl. Surf. Sci. 392, 27 (2017)CrossRefGoogle Scholar
  6. [6]
    B. Ahmed, D.H. Anjum, Y. Gogotsi, H.N. Alshareef, Nano Energy 34, 249 (2017)CrossRefGoogle Scholar
  7. [7]
    D.H. Liu, W.H. Li, Y.P. Zheng, Z. Cui, X. Yan, D.S. Liu, J. Wang, Y. Zhang, H.Y. Lu, F.Y. Bai, J.Z. Guo, X.L. Wu, Adv. Mater. 30, 1706317 (2018)CrossRefGoogle Scholar
  8. [8]
    X.W. Huang, W.P. Xiao, L.Z. Zhao, J. Mol. Sci. 33, 313 (2017)Google Scholar
  9. [9]
    W.T. Zhang, D.H. Tang, Q.S. Huo, J. Mol. Sci. 33, 460 (2017)Google Scholar
  10. [10]
    S.Y. Liu, C.Y. Fan, Y.H. Shi, H.C. Wang, X.L. Wu, J.P. Zhang, A.C.S. Appl, Mater. Interfaces 10, 509 (2018)CrossRefGoogle Scholar
  11. [11]
    Q.L. Ning, B.H. Hou, Y.Y. Wang, D.S. Liu, Z.Z. Luo, W.H. Li, Y. Yang, J.Z. Guo, X.L. Wu, A.C.S. Appl, Mater. Interfaces 10, 36902 (2018)CrossRefGoogle Scholar
  12. [12]
    H.G. Wang, W. Li, D.P. Liu, X.L. Feng, J. Wang, X.Y. Yang, X.B. Zhang, Y. Zhu, Y. Zhang, Adv. Mater. 29, 1703012 (2017)CrossRefGoogle Scholar
  13. [13]
    L. Xiao, H. Lu, Y. Fang, M.L. Sushko, Y. Cao, X. Ai, H. Yang, J. Liu, Adv. Energy Mater. 8, 1703238 (2018)CrossRefGoogle Scholar
  14. [14]
    Y.X. Ren, T.S. Zhao, M. Liu, L. Wei, R.H. Zhang, Electrochim. Acta 242, 137 (2017)CrossRefGoogle Scholar
  15. [15]
    P. Xu, G. Wang, J. Yan, Z. Zhang, M. Xu, S. Cai, X. Ruan, Z. Deng, Mater. Lett. 190, 56 (2017)CrossRefGoogle Scholar
  16. [16]
    L.Y. Yang, H.Z. Li, L.Z. Cheng, S.T. Li, J. Liu, J. Min, K.J. Zhu, H. Wang, M. Lei, J. Alloys Compd. 726, 837 (2017)CrossRefGoogle Scholar
  17. [17]
    L. Jabbour, R. Bongiovanni, D. Chaussy, C. Gerbaldi, D. Beneventi, Cellulose 20, 1523 (2013)CrossRefGoogle Scholar
  18. [18]
    M. Jonoobi, R. Oladi, Y. Davoudpour, K. Oksman, A. Dufresne, Y. Hamzeh, R. Davoodi, Cellulose 22, 935 (2015)CrossRefGoogle Scholar
  19. [19]
    S.H. Osong, S. Norgren, P. Engstrand, Cellulose 23, 93 (2015)CrossRefGoogle Scholar
  20. [20]
    Q. Zhang, K. Zhou, J. Lei, W. Hu, Appl. Surf. Sci. 467–468, 992 (2019)CrossRefGoogle Scholar
  21. [21]
    S. Xie, S. Liu, F. Cheng, X. Lu, ChemElectroChem 5, 571 (2018)CrossRefGoogle Scholar
  22. [22]
    X. Chen, Y. Ma, Adv. Mater. Technol. 3, 1800041 (2018)CrossRefGoogle Scholar
  23. [23]
    H.Y. Lü, X.H. Zhang, F. Wan, D.S. Liu, C.Y. Fan, H.M. Xu, G. Wang, X.L. Wu, A.C.S. Appl, Mater. Interfaces 9, 12518 (2017)CrossRefGoogle Scholar
  24. [24]
    X. Gu, S. Wang, L. Wang, C. Wu, K. Xu, L. Zhao, Q. Liu, M. Ding, J. Xu, J. Nanosci. Nanotechnol. 19, 226 (2019)CrossRefGoogle Scholar
  25. [25]
    L. Wang, X. Xie, K.N. Dinh, Q. Yan, J. Ma, Coord. Chem. Rev. 397, 138 (2019)CrossRefGoogle Scholar
  26. [26]
    G.D. Park, J.-K. Lee, Y.C. Kang, Adv. Funct. Mater. 27, 1603399 (2017)CrossRefGoogle Scholar
  27. [27]
    J. Qin, N. Zhao, C. Shi, E. Liu, F. He, L. Ma, Q. Li, J. Li, C. He, J. Mater. Chem. A 5, 10946 (2017)CrossRefGoogle Scholar
  28. [28]
    P. Zheng, Z. Dai, Y. Zhang, K.N. Dinh, Y. Zheng, H. Fan, J. Yang, R. Dangol, B. Li, Y. Zong, Q. Yan, X. Liu, Nanoscale 9, 14820 (2017)CrossRefGoogle Scholar
  29. [29]
    S. Qi, B. Xu, V.T. Tiong, J. Hu, J. Ma, Chem. Eng. J. 379, 122261 (2020)CrossRefGoogle Scholar
  30. [30]
    M. Wu, B. Xu, Y. Zhang, S. Qi, W. Ni, J. Hu, J. Ma, Chem. Eng. J. 381, 122558 (2020)CrossRefGoogle Scholar
  31. [31]
    D. Wu, C. Wang, M. Wu, Y. Chao, P. He, J. Ma, J. Energy Chem. 43, 24 (2020)CrossRefGoogle Scholar
  32. [32]
    D. Liu, Z.J. Liu, X. Li, W. Xie, Q. Wang, Q. Liu, Y. Fu, D. He, Small 13, 1702000 (2017)CrossRefGoogle Scholar
  33. [33]
    H.B. Wu, J.S. Chen, H.H. Hng, X.W. Lou, Nanoscale 4, 2526 (2012)CrossRefGoogle Scholar
  34. [34]
    B. Zhang, G. Rousse, D. Foix, R. Dugas, D.A. Corte, J.M. Tarascon, Adv. Mater. 28, 9824 (2016)CrossRefGoogle Scholar
  35. [35]
    Y. Xu, B. Peng, F.M. Mulder, Adv. Energy Mater. 8, 1701847 (2018)CrossRefGoogle Scholar
  36. [36]
    X. Yang, R.Y. Zhang, J. Zhao, Z.X. Wei, D.X. Wang, X.F. Bie, Y. Gao, J. Wang, F. Du, G. Chen, Adv. Energy Mater. 8, 1701827 (2018)CrossRefGoogle Scholar
  37. [37]
    B. Qu, C. Ma, G. Ji, C. Xu, J. Xu, Y.S. Meng, T. Wang, J.Y. Lee, Adv. Mater. 26, 3854 (2014)CrossRefGoogle Scholar
  38. [38]
    J.H. Kim, M.J. Jung, M.J. Kim, Y.S. Lee, J. Ind. Eng. Chem. 61, 368 (2018)CrossRefGoogle Scholar
  39. [39]
    S. Qiu, L. Xiao, M.L. Sushko, K.S. Han, Y. Shao, M. Yan, X. Liang, L. Mai, J. Feng, Y. Cao, X. Ai, H. Yang, J. Liu, Adv. Energy Mater. 7, 1700403 (2017)CrossRefGoogle Scholar
  40. [40]
    D. Saurel, B. Orayech, B. Xiao, D. Carriazo, X. Li, T. Rojo, Adv. Energy Mater. 8, 1703268 (2018)CrossRefGoogle Scholar
  41. [41]
    J.Z. Guo, Y. Yang, D.S. Liu, X.L. Wu, B.H. Hou, W.L. Pang, K.C. Huang, J.P. Zhang, Z.M. Su, Adv. Energy Mater. 8, 1702504 (2018)CrossRefGoogle Scholar
  42. [42]
    J. Liang, C. Yuan, H. Li, K. Fan, Z. Wei, H. Sun, J. Ma, Nano-Micro Lett. 10, 21 (2018)CrossRefGoogle Scholar
  43. [43]
    M.S. Park, G.X. Wang, Y.M. Kang, D. Wexler, S.X. Dou, H.K. Liu, Angew. Chem. Int. Ed. 46, 750 (2007)CrossRefGoogle Scholar
  44. [44]
    Y. Yang, X. Zhao, H.-E. Wang, M. Li, C. Hao, M. Ji, S. Ren, G. Cao, J. Mater. Chem. A 6, 3479 (2018)CrossRefGoogle Scholar
  45. [45]
    X.W. Lou, C.M. Li, L.A. Archer, Adv. Mater. 21, 2536 (2009)CrossRefGoogle Scholar
  46. [46]
    X. Zhou, L.J. Wan, Y.G. Guo, Adv. Mater. 25, 2152 (2013)CrossRefGoogle Scholar
  47. [47]
    D. Chao, C. Zhu, P. Yang, X. Xia, J. Liu, J. Wang, X. Fan, S.V. Savilov, J. Lin, H.J. Fan, Z.X. Shen, Nat. Commun. 7, 12122 (2016)CrossRefGoogle Scholar
  48. [48]
    J.Z. Guo, P.F. Wang, X.L. Wu, X.H. Zhang, Q. Yan, H. Chen, J.P. Zhang, Y.G. Guo, Adv. Mater. 29, 1701968 (2017)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Faculty of ChemistryNortheast Normal UniversityChangchunChina
  2. 2.National and Local United Engineering Laboratory for Power Batteries, Faculty of ChemistryNortheast Normal UniversityChangchunChina
  3. 3.Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of EducationNortheast Normal UniversityChangchunChina
  4. 4.School of Chemistry and Chemical EngineeringGuangzhou UniversityGuangzhouChina

Personalised recommendations