Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Microstructure and Mechanical Performance of Ti–6Al–4V Lattice Structures Manufactured via Electron Beam Melting (EBM): A Review

Abstract

Electron beam melting (EBM) process is an additive manufacturing process largely used to produce complex metallic components made of high-performance materials for aerospace and medical applications. Especially, lattice structures made by Ti–6Al–4V have represented a hot topic for the industrial sectors because of having a great potential to combine lower weights and higher performances that can also be tailored by subsequent heat treatments. However, the little knowledge about the mechanical behaviour of the lattice structures is limiting their applications. The present work aims to provide a comprehensive review of the studies on the mechanical behaviour of the lattice structures made of Ti–6Al–4V. The main steps to produce an EBM part were considered as guidelines to review the literature on the lattice performance: (1) design, (2) process and (3) post-heat treatment. Thereafter, the correlation between the geometrical features of the lattice structure and their mechanical behaviour is discussed. In addition, the correlation among the mechanical performance of the lattice structures and the process precision, surface roughness and working temperature are also reviewed. An investigation on the studies about the properties of heat-treated lattice structure is also conducted.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. [1]

    I. Polmear, D. StJohn, J.F. Nie, M. Qian, Light Alloys: Metallurgy of the Light Metals (Butterworth-Heinemann, Oxford, 2017)

  2. [2]

    A. Saboori, D. Gallo, S. Biamino, P. Fino, M. Lombardi, Appl. Sci. 7(9), 883 (2017)

  3. [3]

    M. Peters, Titanium and Titanium Alloys (Wiley, New York, 2003)

  4. [4]

    E. Brandl, A. Schoberth, C. Leyens, Mater. Sci. Eng. A 532, 295 (2012)

  5. [5]

    H.M. Wang, S.Q. Zhang, X.M. Wang, Chin. J. Lasers 36, 3204 (2009)

  6. [6]

    F.G. Arcella, F.H. Froes, JOM 52, 28 (2000)

  7. [7]

    H. Galarraga, R.J. Warren, D.A. Lados, R.R. Dehoff, M.M. Kirka, P. Nandwana, Mater. Sci. Eng. A 685, 417 (2017)

  8. [8]

    A. Mitchell, Mater. Sci. Eng. A 243, 257 (1998)

  9. [9]

    W.E. Frazier, J. Mater. Eng. Perform. 23, 1917 (2014)

  10. [10]

    B. Baufeld, O. Van der Biest, R. Gault, Mater. Des. 31, S106 (2010)

  11. [11]

    B. Dutta, F.H.S. Froes, Met. Powder Rep. 72, 1 (2017)

  12. [12]

    ASTM F2792-12a, Standard Terminology for Additive Manufacturing Technologies, F42.19, Ed. (ASTM International, West Conshohocken). https://doi.org/10.1520/F2792-12A

  13. [13]

    A. Heidarzadeh, H. Pouraliakbar, S. Mahdavi, M.R. Jandaghi, Ceram. Int. 44, 3128 (2018)

  14. [14]

    I. Gibson, D.W. Rosen, B. Stucker, Additive Manufacturing Technologies (Springer, New York, 2010)

  15. [15]

    B. Onuike, A. Bandyopadhyay, Mater. Lett. 252, 256 (2019)

  16. [16]

    L. Hitzler, M. Merkel, W. Hall, A. Öchsner, Adv. Eng. Mater. 20, 1700658 (2018)

  17. [17]

    S.L. Sing, W.Y. Yeong, F.E. Wiria, J. Alloy. Compd. 660, 461 (2016)

  18. [18]

    Q. Jia, D. Gu, J. Alloys Compd. 585, 713 (2014)

  19. [19]

    Y. Kuo, A. Kamigaichi, K. Kakehi, Metall. Mater. Trans. A 49, 3831 (2018)

  20. [20]

    A. Saboori, F. Bosio, E. Librera, M. De Chirico, S. Biamino, M. Lombardi, P. Fino, in Euro PM2018 Congr. Exhebition (Bilbao, Spain, 2018), pp. 1–6

  21. [21]

    F. Bosio, A. Saboori, A. Lacagnina, E. Librera, M. De Chirico, S. Biamino, P. Fino, M. Lombardi, in Euro PM2018 Congr. Exhebition (Bilbao, Spain, 2018), pp. 1–6

  22. [22]

    A. Saboori, A. Aversa, F. Bosio, E. Bassini, E. Librera, M. De Chirico, S. Biamino, D. Ugues, P. Fino, M. Lombardi, Mater. Sci. Eng. A 766, 138360 (2019)

  23. [23]

    A. Saboori, A. Aversa, G. Marchese, S. Biamino, M. Lombardi, P. Fino, Appl. Sci. 9, 3316 (2019)

  24. [24]

    G. Marchese, S. Parizia, M. Rashidi, A. Saboori, D. Manfredi, D. Ugues, M. Lombardi, E. Hryha, S. Biamino, Mater. Sci. Eng. A 769, 138500 (2020)

  25. [25]

    T.T. Wohlers, Wohlers Report 2006: Rapid Prototyping & Manufacturing State of the Industry: Annual Worldwide Progress Report (Wohlers Associates, Fort Collins, 2006)

  26. [26]

    C. Marie, Rapid Prototyp. J. 19, 365 (2013)

  27. [27]

    A.Y. Albagachiev, A.S. Krasko, N.S. Baranova, E.S. Stramtsova, A.A. Mokanu, Russ. Eng. Res. 38, 687 (2018)

  28. [28]

    S. Biamino, A. Penna, U. Ackelid, S. Sabbadini, O. Tassa, P. Fino, M. Pavese, P. Gennaro, C. Badini, Intermetallics 19, 776 (2011)

  29. [29]

    A. Ataee, Y. Li, D. Fraser, G. Song, C. Wen, Mater. Des. 137, 345 (2018)

  30. [30]

    M. Terner, S. Biamino, P. Epicoco, A. Penna, O. Hedin, S. Sabbadini, P. Fino, M. Pavese, U. Ackelid, P. Gennaro, F. Pelissero, C. Badini, Steel Res. Int. 83, 943 (2012)

  31. [31]

    Y. Zhong, L.E. Rännar, L. Liu, A. Koptyug, S. Wikman, J. Olsen, D. Cui, Z. Shen, J. Nucl. Mater. 486, 234 (2017)

  32. [32]

    D. Cormier, O. Harrysson, H. West, Rapid Prototyp. J. 10, 35 (2004)

  33. [33]

    Y. Zhai, H. Galarraga, D.A. Lados, Proc. Eng. 114, 658 (2015)

  34. [34]

    G. Baudana, S. Biamino, D. Ugues, M. Lombardi, P. Fino, M. Pavese, C. Badini, Met. Powder Rep. 71, 193 (2016)

  35. [35]

    K. Kyzioł, Ł. Kaczmarek, G. Brzezinka, A. Kyzioł, Chem. Eng. J. 240, 516–526 (2014)

  36. [36]

    M. Larsson, U. Lindhe, O. Harrysson, in Annual International Solid Freeform Fabrication Symposium (2003), p. 438

  37. [37]

    S. Price, J. Lydon, K. Cooper, K. Chou, in Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition. Volume 2A: Advanced Manufacturing, Montreal, Quebec, Canada, 14–20 November 2014. V02AT02A002 (ASME)

  38. [38]

    C. Körner, E. Attar, P. Heinl, J. Mater. Process. Technol. 211, 978 (2011)

  39. [39]

    J. Milberg, M. Sigl, Prod. Eng. 2, 117 (2008)

  40. [40]

    M. Galati, L. Iuliano, Addit. Manuf. 19, 1–20 (2018)

  41. [41]

    E. Attar, Simul. Sel. Electron Beam Melt. Process. 211, 978 (2011)

  42. [42]

    A. Safdar, L.Y. Wei, A. Snis, Z. Lai, Mater. Charact. 65, 8 (2012)

  43. [43]

    W. He, W. Jia, H. Liu, H. Tang, X. Kang, Y. Huang, X. Jinshu, X. Jinshu, Xiyou Jinshu Cailiao Yu Gongcheng/Rare Met. Mater. Eng. 40, 2072 (2011)

  44. [44]

    T. R. Mahale, Electron beam melting of advanced materials and structures, mass customization, mass personalization. PhD dissertation, Industrial Engineering, Raleigh, 2009

  45. [45]

    S.M. Gaytan, L.E. Murr, F. Medina, E. Martinez, M.I. Lopez, R.B. Wicker, Mater. Technol. 24, 180 (2009)

  46. [46]

    P. Heinl, A. Rottmair, C. Körner, R.F. Singer, Adv. Eng. Mater. 9, 360 (2007)

  47. [47]

    H.R.V. Popov, A. Katz-Demyanetz, A. Garkun, G. Muller, E. Strokin, V. Popov, A. Katz-Demyanetz, A. Garkun, G. Muller, E. Strokin, H. Rosenson, Proc. Manuf. 21, 125–132 (2018)

  48. [48]

    E. Hernández-Nava, C.J. Smith, F. Derguti, S. Tammas-Williams, F. Léonard, P.J. Withers, I. Todd, R. Goodall, Acta Mater. 108, 279 (2016)

  49. [49]

    T. Persenot, G. Martin, R. Dendievel, J.Y. Buffiére, E. Maire, Mater. Charact. 143, 82 (2018)

  50. [50]

    R. Cunningham, A. Nicolas, J. Madsen, E. Fodran, E. Anagnostou, M.D. Sangid, A.D. Rollett, Mater. Res. Lett. 5, 516 (2017)

  51. [51]

    S. Tammas-Williams, P.J. Withers, I. Todd, P.B. Prangnell, Metall. Mater. Trans. A 47, 1939 (2016)

  52. [52]

    A. Khorasani, I. Gibson, M. Goldberg, G. Littlefair, Rapid Prototyp. J. 23, 295 (2017)

  53. [53]

    A. Saboori, S. Tusacciu, M. Busatto, M. Lai, S. Biamino, P. Fino, M. Lombardi, J. Vis. Exp. 2018, e56966 (2018)

  54. [54]

    L.E. Murr, S.A. Quinones, S.M. Gaytan, M.I. Lopez, A. Rodela, E.Y. Martinez, D.H. Hernandez, E. Martinez, F. Medina, R.B. Wicker, J. Mech. Behav. Biomed. Mater. 2, 20 (2009)

  55. [55]

    L.J. Gibson, M.F. Ashby, Cellular Solids: Structure and Properties (Cambridge University Press, Cambridge, 1999)

  56. [56]

    N.A. Fleck, V.S. Deshpande, M.F. Ashby, Proc. R. Soc. Math. A Phys. Eng. Sci. 466, 2495 (2010)

  57. [57]

    M. Suard, G. Martin, P. Lhuissier, R. Dendievel, F. Vignat, J.J. Blandin, F. Villeneuve, Addit. Manuf. 8, 124 (2015)

  58. [58]

    K.J. Maloney, K.D. Fink, T.A. Schaedler, J.A. Kolodziejska, A.J. Jacobsen, C.S. Roper, Int. J. Heat Mass Transf. 55, 2486 (2012)

  59. [59]

    A.G. Evans, J.W. Hutchinson, M.F. Ashby, Prog. Mater Sci. 43, 171 (1998)

  60. [60]

    G.W. Kooistra, V.S. Deshpande, H.N.G. Wadley, Acta Mater. 52, 4229 (2004)

  61. [61]

    L.E. Murr, S.M. Gaytan, F. Medina, H. Lopez, E. Martinez, B.I. Machado, D.H. Hernandez, L. Martinez, M.I. Lopez, R.B. Wicker, J. Bracke, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 368, 1999 (2010)

  62. [62]

    M. Niinomi, Metall. Mater. Trans. A 33, 477 (2002)

  63. [63]

    J.W. Park, H.K. Kim, Y.J. Kim, J.H. Jang, H. Song, T. Hanawa, Acta Biomater. 6, 2843 (2010)

  64. [64]

    F. Calignano, M. Galati, L. Iuliano, P. Minetola, J. Healthc. Eng. 2019, 9748212 (2019)

  65. [65]

    P. Heinl, L. Müller, C. Körner, R.F. Singer, F.A. Müller, Acta Biomater. 4, 1536 (2008)

  66. [66]

    X.Y. Cheng, S.J. Li, L.E. Murr, Z.B. Zhang, Y.L. Hao, R. Yang, F. Medina, R.B. Wicker, J. Mech. Behav. Biomed. Mater. 16, 153 (2012)

  67. [67]

    J. Parthasarathy, B. Starly, S. Raman, A. Christensen, J. Mech. Behav. Biomed. Mater. 3, 249 (2010)

  68. [68]

    O. Cansizoglu, O. Harrysson, D. Cormier, H. West, T. Mahale, Mater. Sci. Eng. A 492, 468 (2008)

  69. [69]

    W. van Grunsven, E. Hernandez-Nava, G. Reilly, R. Goodall, Metals (Basel) 4, 401 (2014)

  70. [70]

    L. Xiao, W. Song, C. Wang, H. Liu, H. Tang, J. Wang, Mater. Sci. Eng. A 640, 375 (2015)

  71. [71]

    M. Jamshidinia, L. Wang, W. Tong, R. Kovacevic, J. Mater. Process. Technol. 214, 1728 (2014)

  72. [72]

    S.J. Li, L.E. Murr, X.Y. Cheng, Z.B. Zhang, Y.L. Hao, R. Yang, F. Medina, R.B. Wicker, Acta Mater. 60, 793 (2012)

  73. [73]

    L.E. Murr, S.M. Gaytan, F. Medina, E. Martinez, J.L. Martinez, D.H. Hernandez, B.I. Machado, D.A. Ramirez, R.B. Wicker, Mater. Sci. Eng. A 527, 1861 (2010)

  74. [74]

    M.F. Ashby, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 364, 15 (2006)

  75. [75]

    V.S. Deshpande, M.F. Ashby, N.A. Fleck, Acta Mater. 49, 1035 (2001)

  76. [76]

    J.C. Maxwell, Dublin Philos. Mag. J. Sci. 27, 294 (1864)

  77. [77]

    E. Hernández-Nava, C.J. Smith, F. Derguti, S. Tammas-Williams, F. Léonard, P.J. Withers, I. Todd, R. Goodall, Acta Mater. 85, 387 (2015)

  78. [78]

    A. Mortensen, Y. Conde, A. Rossoll, C.S. Marchi, J. Mater. Sci. 48, 8140 (2013)

  79. [79]

    T.J. Horn, O.L.A. Harrysson, D.J. Marcellin-Little, H.A. West, B.D.X. Lascelles, R. Aman, Addit. Manuf. 1, 2 (2014)

  80. [80]

    Z. Fang, B. Starly, W. Sun, Comput. Des. 37, 65 (2005)

  81. [81]

    B. Starly, A. Lau, W. Sun, W. Lau, T. Bradbury, Comput. Des. 37, 387 (2005)

  82. [82]

    J. Parthasarathy, B. Starly, S. Raman, J. Manuf. Process. 13, 160 (2011)

  83. [83]

    M. Jamshidinia, L. Wang, W. Tong, R. Ajlouni, R. Kovacevic, J. Mater. Process. Technol. 226, 255 (2015)

  84. [84]

    G. Epasto, G. Palomba, D.D. Andrea, E. Guglielmino, S. Di, F. Traina, Mater. Sci. Eng. A 753, 31 (2019)

  85. [85]

    L. Yang, Rapid Prototyp. J. 21, 329e39 (2015)

  86. [86]

    L. Xiao, W. Song, C. Wang, H. Tang, Q. Fan, N. Liu, J. Wang, Int. J. Impact Eng. 100, 75 (2017)

  87. [87]

    M. Karl, J.R. Kelly, Dent. Mater. 25, 1426 (2009)

  88. [88]

    M. Galati, P. Minetola, G. Rizza, Materials (Basel) 12, 2211 (2019)

  89. [89]

    Y.Y. Sun, S. Gulizia, C.H. Oh, D. Fraser, M. Leary, Y.F. Yang, M. Qian, JOM 68, 791 (2016)

  90. [90]

    M. Suard, P. Lhuissier, R. Dendievel, J.J. Blandin, F. Vignat, F. Villeneuve, Powder Metall. 57, 190 (2014)

  91. [91]

    K.S. Chan, M. Koike, R.L. Mason, T. Okabe, Metall. Mater. Trans. A 44, 1010 (2013)

  92. [92]

    ASTM, i, 1 (2019)

  93. [93]

    S. Tammas-Williams, P.J. Withers, I. Todd, P.B. Prangnell, Scr. Mater. 122, 72 (2016)

  94. [94]

    C. De Formanoir, S. Michotte, O. Rigo, L. Germain, S. Godet, Mater. Sci. Eng. A 652, 105 (2016)

Download references

Author information

Correspondence to Abdollah Saboori.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Del Guercio, G., Galati, M., Saboori, A. et al. Microstructure and Mechanical Performance of Ti–6Al–4V Lattice Structures Manufactured via Electron Beam Melting (EBM): A Review. Acta Metall. Sin. (Engl. Lett.) 33, 183–203 (2020). https://doi.org/10.1007/s40195-020-00998-1

Download citation

Keywords

  • Electron beam melting (EBM)
  • Additive manufacturing (AM)
  • Lattice structures
  • Ti–6Al–4V
  • Mechanical properties
  • Heat treatment