Advertisement

Influence of Yttrium Addition on the Reduction Property of Tungsten Oxide Prepared via Wet Chemical Method

  • Nan Liu
  • Zhi Dong
  • Zongqing MaEmail author
  • Zhu Qian
  • Lei Ma
  • Liming YuEmail author
  • Yongchang Liu
Article
  • 33 Downloads

Abstract

W–Y2O3 composite nanopowders prepared via wet chemical method exhibit unique morphologies and microstructures. The yttrium addition during chemical reaction process affects not only the composition of tungsten acid hydrate precursors, but also the reduction property of tungsten oxide transformed from precursors. In this study, the morphology evolution of the samples with and without yttrium during reduction process has been studied, and it is found that the addition of yttrium can exert a strong influence on the reduction route of tungsten oxide and the final morphology of tungsten particles. The cause of the difference of reduction route and tungsten particle morphology is also analyzed. It is suggested that the composition of the samples with yttrium at the beginning of reduction is pure cubic system WO3(c-WO3), and the c-WO3 particles have c-WO3 whiskers attached to the surface. This kind of whiskers is essential for c-WO3 to be reduced directly to tungsten and also helpful to obtain W–Y2O3 powders with small size and good uniformity.

Keywords

W–Y2O3 nanopowders Wet chemical method Reduction property 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51822404 and 51574178), the Science and Technology Program of Tianjin (No. 18YFZCGX00070), the Natural Science Foundation of Tianjin (No. 18JCYBJC17900) and the Seed Foundation of Tianjin University (Nos. 2018XRX-0005 and 2019XYF-0066).

References

  1. [1]
    S.I. Cha, S.H. Hong, B.K. Kim, Mater. Sci. Eng. A 351, 31 (2003)CrossRefGoogle Scholar
  2. [2]
    B. Liu, A. Shi, G. Yang, Q. Su, G. Chen, L. Zhang, B. Yang, Int. J. Refract. Met. Hard Mater. 67, 74 (2017)CrossRefGoogle Scholar
  3. [3]
    W. He, D.Q. Tan, H. Kuang, Y.L. Li, X. Yang, H.B. Zhu, J. Alloys Compd. 742, 702 (2018)CrossRefGoogle Scholar
  4. [4]
    M. Rieth, J.L. Boutard, S.L. Dudarev, T. Ahlgren, S. Antusch, N. Baluc, M.F. Barthe, C.S. Becquart, L. Ciupinski, J.B. Correia, C. Domain, J. Fikar, E. Fortuna, C.C. Fu, E. Gaganidze, T.L. Galán, C. García-Rosales, B. Gludovatz, H. Greuner, K. Heinola, N. Holstein, N. Juslin, F. Koch, W. Krauss, K.J. Kurzydlowski, J. Linke, Ch. Linsmeier, N. Luzginova, H. Maier, M.S. Martínez, J.M. Missiaen, M. Muhammed, A. Muñoz, M. Muzyk, K. Nordlund, D. Nguyen-Manh, P. Norajitra, J. Opschoor, G. Pintsuk, R. Pippan, G. Ritz, L. Romaner, D. Rupp, R. Schäublin, J. Schlosser, I. Uytdenhouwen, J.G. van der Laan, L. Veleva, L. Ventelon, S. Wahlberg, F. Willaime, S. Wurster, M.A. Yar, J. Nucl. Mater. 417, 463 (2011)CrossRefGoogle Scholar
  5. [5]
    S. Wurster, N. Baluc, M. Battabyal, T. Crosby, J. Du, C. García-Rosales, A. Hasegawa, A. Hoffmann, A. Kimura, H. Kurishita, R.J. Kurtz, H. Li, S. Noh, J. Reiser, J. Riesch, M. Rieth, W. Setyawan, M. Walter, J.H. You, R. Pippan, J. Nucl. Mater. 442, S181 (2013)CrossRefGoogle Scholar
  6. [6]
    S. Zhang, Y. Wen, H. Zhang, Powder Technol. 253, 464 (2014)CrossRefGoogle Scholar
  7. [7]
    L. Veleva, R. Schaeublin, M. Battabyal, T. Plociski, N. Baluc, Int. J. Refract. Met. Hard Mater. 50, 210 (2015)CrossRefGoogle Scholar
  8. [8]
    L.M. Luo, X.Y. Tan, H.Y. Chen, G.N. Luo, X.Y. Zhu, J.G. Cheng, Y.C. Wu, Powder Technol. 273, 8 (2015)CrossRefGoogle Scholar
  9. [9]
    M. Xia, Q. Yan, L. Xu, L. Zhu, H. Guo, C. Ge, J. Nucl. Mater. 430, 216 (2012)CrossRefGoogle Scholar
  10. [10]
    Y.K. Wang, S. Miao, Z.M. Xie, R. Liu, T. Zhang, Q.F. Fang, T. Hao, X.P. Wang, C.S. Liu, X. Liu, L.H. Cai, J. Nucl. Mater. 492, 260 (2017)CrossRefGoogle Scholar
  11. [11]
    E. Lassner, W.D. Schubert, Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds (Springer, New York, 1999)CrossRefGoogle Scholar
  12. [12]
    A. Moitra, S. Kim, S.G. Kim, S.J. Park, R.M. German, M.F. Horstemeyer, Acta Mater. 58, 3939 (2010)CrossRefGoogle Scholar
  13. [13]
    R.N. German, J. Ma, X. Wang, E. Olevsky, Powder Metall. 49, 19 (2013)CrossRefGoogle Scholar
  14. [14]
    R. Malewar, K.S. Kuma, B.S. Murty, B. Sarma, S.K. Pabi, J. Mater. Res. 22, 1200 (2011)CrossRefGoogle Scholar
  15. [15]
    G. Prabhu, A. Chakraborty, B. Sarma, Int. J. Refract. Met. Hard Mater. 27, 545 (2009)CrossRefGoogle Scholar
  16. [16]
    H. Kurishita, S. Kobayashi, K. Nakai, T. Ogawa, A. Hasegawa, K. Abe, H. Arakawa, S. Matsuo, T. Takida, K. Takebe, M. Kawai, N. Yoshida, J. Nucl. Mater. 377, 34 (2008)CrossRefGoogle Scholar
  17. [17]
    X. Wu, Y.W. You, X.S. Kong, J.L. Chen, G.N. Luo, G.H. Lu, C.S. Liu, Z.G. Wang, Acta Mater. 120, 315 (2016)CrossRefGoogle Scholar
  18. [18]
    T. Ryu, K.S. Hwang, Y.J. Choi, H.Y. Sohn, Int. J. Refract. Met. Hard Mater. 27, 701 (2009)CrossRefGoogle Scholar
  19. [19]
    L. Dai, Y.C. Liu, Z.Q. Ma, Z.Z. Dong, L.M. Yu, J. Mater. Sci. 48, 1826 (2013)CrossRefGoogle Scholar
  20. [20]
    K.L. Li, D.Z. Wang, L.L. Xing, Y.F. Wang, C.F. Yu, J.H. Chen, T. Zhang, J. Ma, W. Liu, Z.J. Shen, Int. J. Refract. Met. Hard Mater. 79, 158 (2019)CrossRefGoogle Scholar
  21. [21]
    X.H. Li, X. Wen, H.H. Zhao, Z.Q. Ma, L.M. Yu, C. Li, C.X. Liu, Q.Y. Guo, Y.C. Liu, J. Alloys Compd. 779, 175 (2019)CrossRefGoogle Scholar
  22. [22]
    X.Y. Ma, Y.C. Wang, X.W. Cheng, C. Gao, Y.B. Wang, S.K. Li, Mater. Sci. Eng. A 744, 604 (2019)CrossRefGoogle Scholar
  23. [23]
    Q. Zhao, Z.Q. Ma, L.M. Yu, H.J. Li, C.X. Liu, C. Li, Y.C. Liu, J. Mater. Sci. Technol. 35, 1064 (2019)CrossRefGoogle Scholar
  24. [24]
    E. Lang, N. Madden, C. Smith, J. Krogstad, J.P. Allain, Int. J. Refract. Met. Hard Mater. 75, 279 (2018)CrossRefGoogle Scholar
  25. [25]
    E. Lang, N. Madden, C. Smith, J. Krogstad, J.P. Allain, Nucl. Mater. Energy 19, 47 (2019)CrossRefGoogle Scholar
  26. [26]
    A.H. Luo, K.S. Shin, D.L. Jacobson, Acta Metall. et Mater. 40, 2225 (1992)CrossRefGoogle Scholar
  27. [27]
    K.S. Shin, A.H. Luo, B.L. Chen, D.L. Jacobson, JOM 42, 12 (1990)CrossRefGoogle Scholar
  28. [28]
    Y. Kim, K.H. Lee, E.P. Kim, D.I. Cheong, S.H. Hong, Int. J. Refract. Met. Hard Mater. 27, 842 (2009)CrossRefGoogle Scholar
  29. [29]
    M. Xia, Q. Yan, L. Xu, H. Guo, L. Zhu, C. Ge, J. Nucl. Mater. 434, 85 (2013)CrossRefGoogle Scholar
  30. [30]
    X.Y. Ding, L.M. Luo, X.Y. Tan, G.N. Luo, P. Li, X. Zan, J.G. Cheng, Y.C. Wu, Fusion Eng. Des. 89, 787 (2014)CrossRefGoogle Scholar
  31. [31]
    W.Q. Hu, Q.S. Ma, Z.Q. Ma, L.M. Yu, Y. Huang, Z.M. Wang, Y.C. Liu, Tungsten 1, 220 (2019)CrossRefGoogle Scholar
  32. [32]
    G. Liu, G.J. Zhang, F. Jiang, X.D. Ding, Y.J. Sun, J. Sun, E. Ma, Nat. Mater. 12, 344 (2013)CrossRefGoogle Scholar
  33. [33]
    S.T. Lang, Q.Z. Yan, N.B. Sun, X.X. Zhang, C.C. Ge, JOM 69, 1992 (2017)CrossRefGoogle Scholar
  34. [34]
    Z. Dong, N. Liu, W.Q. Hu, X.W. Kong, Z.Q. Ma, Y.C. Liu, Mater. Des. 181, 108080 (2019)CrossRefGoogle Scholar
  35. [35]
    X.Y. Ding, J.Q. Liu, L.M. Luo, Q. Xu, Nucl. Fusion 59, 016008 (2019)CrossRefGoogle Scholar
  36. [36]
    W.Q. Hu, L.M. Yu, Z.Q. Ma, Y.C. Liu, J. Alloys Compd. 806, 127 (2019)CrossRefGoogle Scholar
  37. [37]
    W.Q. Hu, Z. Dong, L.M. Yu, Z.Q. Ma, Y.C. Liu, J. Mater. Sci. Technol. 36, 84 (2020)CrossRefGoogle Scholar
  38. [38]
    M.A. Yar, S. Wahlberg, H. Bergqvist, H.G. Salem, M. Johnsson, M. Muhammed, J. Nucl. Mater. 412, 227 (2011)CrossRefGoogle Scholar
  39. [39]
    S. Wahlberg, M.A. Yar, M.O. Abuelnaga, H.G. Salem, M. Johnsson, M. Muhammed, J. Mater. Chem. 22, 12622 (2012)CrossRefGoogle Scholar
  40. [40]
    Z. Dong, N. Liu, W.Q. Hu, Z.Q. Ma, C. Li, C.X. Liu, Q.Y. Guo, Y.C. Liu, J. Mater. Sci. Technol. 36, 118 (2020)CrossRefGoogle Scholar
  41. [41]
    M.A. Yar, S. Wahlberg, M.O. Abuelnaga, M. Johnsson, M. Muhammed, J. Mater. Sci. 49, 5703 (2014)CrossRefGoogle Scholar
  42. [42]
    Z. Dong, N. Liu, Z.Q. Ma, C.X. Liu, Q.Y. Guo, Y.C. Liu, J. Alloys Compd. 695, 2969 (2017)CrossRefGoogle Scholar
  43. [43]
    Z. Dong, N. Liu, Z.Q. Ma, Q.Y. Guo, Z.A. Alothman, Y. Yamauchi, M. Shahriar, A. Hossain, Y.C. Liu, Sci. Rep. 7, 6051 (2017)CrossRefGoogle Scholar
  44. [44]
    Z. Dong, N. Liu, Z.Q. Ma, C.X. Liu, Q.Y. Guo, Y. Yamauchi, H.R. Alamri, Z.A. Alothman, M. Shahriar, A. Hossain, Y.C. Liu, Int. J. Refract. Met. Hard Mater. 69, 266 (2017)CrossRefGoogle Scholar
  45. [45]
    N. Liu, Z. Dong, Z.Q. Ma, L.M. Yu, C. Li, C.X. Liu, Q.Y. Guo, Y.C. Liu, J. Alloys Compd. 774, 122 (2019)CrossRefGoogle Scholar
  46. [46]
    Z. Dong, W.Q. Hu, Z.Q. Ma, C. Li, Y.C. Liu, Mater. Chem. Front. 3, 1952 (2019)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Lab of Hydraulic Engineering Simulation and Safety, School of Materials Science and EngineeringTianjin UniversityTianjinChina
  2. 2.Tianjin Zhujin Technology Development CorporationTianjinChina

Personalised recommendations