Ultra-fine-Grained Ferrite Prepared from Dynamic Reversal Austenite During Warm Deformation
- 23 Downloads
Abstract
The ultra-fine-grained ferrite (UFGF) with the size of less than 1 μm is often difficult to be obtained for low-alloyed steel in practical production processing. In this study, considering the rod and wire production process, a new method for preparing the UFGF with submicron scale is proposed by warm deformation of six passes with total strain of 2.6, followed by the cooling process in Gleeble-3500 thermo-mechanical simulator. The results show that the UFGF with an average size of 0.64 μm could be obtained via the phase transformation from austenite grains with an average size of 3.4 μm, which are achieved by the deformation-induced reversal austenization during the high strain rate warm deformation. The main driving force for the reversal transformation is the stress. And the interval between the passes also plays an important role in the reversal austenization.
Keywords
Ultra-fine-grained ferrite Dynamic reversal transformation (DRT) Warm deformation Deformation-induced reversal transformation Cooling processNotes
Acknowledgements
This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51574107, 51501056, 51975593), the Natural Science Foundation of Hebei Province (Grant Nos. E2015209243, E2017209048), the Liaoning Provincial Natural Science Foundation of China (Grant No. 2019-KF-25-01), and the Research Funds from Department of Education of Hebei Province (Grant Nos. QN2019051, ZD 2019064).
References
- [1]M.H. Cai, H.S. Huang, J.H. Su, H. Ding, P.D. Hodgson, J. Mater. Sci. Technol. 34, 1428 (2018)CrossRefGoogle Scholar
- [2]Y. Shao, C.X. Liu, Z.S. Yan, H.J. Li, Y.C. Liu, J. Mater. Sci. Technol. 34, 737 (2018)CrossRefGoogle Scholar
- [3]D.G. He, Y.C. Lin, J. Chen, D.D. Chen, J. Huang, Y. Tang, M.S. Chen, Mater. Des. 154, 51 (2018)CrossRefGoogle Scholar
- [4]L.J. Zhao, N. Park, Y.Z. Tian, A. Shibata, N. Tsuji, Adv. Eng. Mater. 1701016, 1 (2018)Google Scholar
- [5]X.Y. Hu, H.L. Zhao, S. Ni, M. Song, Mater. Charact. 129, 149 (2017)CrossRefGoogle Scholar
- [6]H.W. Luo, J. Shi, C. Wang, W.Q. Cao, X.J. Sun, H. Dong, Acta Mater. 59, 4002 (2011)CrossRefGoogle Scholar
- [7]N. Tsuji, T. Maki, Scr. Mater. 60, 1044 (2009)CrossRefGoogle Scholar
- [8]M.K. Pathak, A. Joshi, K.K.S. Mer, R. Jayaganthan, Acta Metall. Sin. (Engl. Lett.) 32, 845 (2019)CrossRefGoogle Scholar
- [9]B. Hu, B.B. He, G.J. Cheng, H.W. Yen, M.X. Huang, H.W. Luo, Acta Mater. 174, 131 (2019)CrossRefGoogle Scholar
- [10]S.J. Yao, L.X. Du, X.H. Liu, G.D. Wang, J. Mater. Sci. Technol. 25, 81 (2009)Google Scholar
- [11]Z. Yanushkevich, A. Belyakov, R. Kaibyshev, C. Haase, D.A. Molodov, Mater. Charact. 112, 180 (2016)CrossRefGoogle Scholar
- [12]F. Yang, H.W. Luo, C.D. Hu, E.X. Pu, H. Dong, Mater. Sci. Eng. A 685, 115 (2017)CrossRefGoogle Scholar
- [13]S. Lee, B.C.D. Cooman, Metall. Mater. Trans. A 45, 5009 (2014)CrossRefGoogle Scholar
- [14]P.P. Chatterjee, S.K. Pabi, I. Manna, J. Appl. Phys. 86, 5912 (1999)CrossRefGoogle Scholar
- [15]S.J. Yao, L.X. Du, X.H. Liu, G.D. Wang, Acta Metall. Sin. (Engl. Lett.) 21, 391 (2008)CrossRefGoogle Scholar
- [16]J.J. Sun, T. Jiang, Y.J. Wang, S.W. Guo, Y.N. Liu, Mater. Sci. Eng. A 726, 342 (2018)CrossRefGoogle Scholar
- [17]Y.Y. Song, X.Y. Li, L.J. Rong, D.H. Ping, F.X. Yin, Y.Y. Li, Mater. Lett. 64, 1411 (2010)CrossRefGoogle Scholar
- [18]B. Hu, H.W. Luo, Acta Mater. 176, 250 (2019)CrossRefGoogle Scholar
- [19]G.W. Yang, Z.D. Li, X.J. Sun, X. Yong, Q.L. Yong, J. Iron. Steel Res. Int. 20, 64 (2013)CrossRefGoogle Scholar
- [20]X.J. Shen, S. Tang, J. Chen, Z.Y. Liu, R.D.K. Misra, G.D. Wang, Mater. Sci. Eng. A 671, 182 (2016)CrossRefGoogle Scholar
- [21]A.S. Alghamdi, I.A. Ashcroft, M. Song, D.Y. Cai, Poly. Test. 32, 1502 (2013)CrossRefGoogle Scholar
- [22]J. Trzaska, L.A. Dobrzanski, J. Mater. Proc. Technol. 192–193, 504 (2007)CrossRefGoogle Scholar
- [23]C. Aranas Jr., T. Nguyen-Minh, R. Grewal, J.J. Jonas, ISIJ Int. 55, 300 (2015)CrossRefGoogle Scholar
- [24]J.J. Jonas, C. Ghosh, Acta Mater. 61, 6125 (2013)CrossRefGoogle Scholar
- [25]C. Aranas Jr., A. Foul, B.Q. Guo, A. Fall, M. Jahazi, J.J. Jonas, Scr. Mater. 133, 83 (2017)CrossRefGoogle Scholar
- [26]L.J. Zhao, N. Park, Y.Z. Tian, A.S.N. Tsuji, Mater. Res. Lett. 6, 641 (2018)CrossRefGoogle Scholar
- [27]C. Ghosh, C. Aranas Jr., J.J. Jonas, Prog. Mater. Sci. 82, 151 (2016)CrossRefGoogle Scholar
- [28]N. Hansen, X. Huang, G. Winther, Mater. Sci. Eng. A 494, 61 (2008)CrossRefGoogle Scholar
- [29]C. Ouchi, T. Sampei, I. Kozasu, Trans. ISIJ 22, 214 (1982)CrossRefGoogle Scholar
- [30]H.B. Li, X.P. Zheng, D.C. Wan, L.S. Chen, J. Iron. Steel Res. Int. 26, 602 (2019)CrossRefGoogle Scholar
- [31]H.P. Li, R. Jiang, L.F. He, H. Yang, C. Wang, C.Z. Zhang, Acta Metall. Sin. (Engl. Lett.) 31, 33 (2018)CrossRefGoogle Scholar
- [32]H.K. Dong, H. Chen, W. Wang, Y.J. Zhang, G. Miyamoto, T. Furuhara, C. Zhang, Z.G. Yang, S.V.D. Zwaag, Acta Mater. 158, 167 (2018)CrossRefGoogle Scholar
- [33]C.Y. Zhang, H. Chen, J.N. Zhu, W.B. Liu, G. Liu, C. Zhang, Z.G. Yang, Scr. Mater. 162, 44 (2019)CrossRefGoogle Scholar
- [34]S.J. Song, W.K. Che, J.B. Zhang, L.K. Huang, S.Y. Duan, F. Liu, J. Mater. Sci. Technol. 35, 1753 (2019)CrossRefGoogle Scholar
- [35]J.G. Chen, C.X. Liu, W. Chen, Y.C. Liu, H.J. Li, Acta Metall. Sin. (Engl. Lett.) 32, 1151 (2019)CrossRefGoogle Scholar
- [36]L.H. Hao, N.M. Xiao, C.W. Zheng, D.Z. Li, J. Mater. Sci. Technol. 26, 1107 (2010)CrossRefGoogle Scholar
- [37]C. Zhang, L. Cui, Y.C. Liu, C.X. Liu, H.J. Li, J. Mater. Sci. Technol. 34, 756 (2018)CrossRefGoogle Scholar
- [38]C. Prasad, P. Bhuyan, C. Kaithwas, R. Saha, S. Mandal, Mater. Des. 139, 324 (2018)CrossRefGoogle Scholar
- [39]H. Rastegari, A. Kermanpur, A. Najafizadeh, M.C. Somani, D.A. Porter, E. Ghassemali, A.E.W. Jarfors, Mater. Sci. Eng. A 658, 167 (2016)CrossRefGoogle Scholar
- [40]G. Miyamoto, H. Usuki, Z.D. Li, T. Furuhara, Acta Mater. 58, 4492 (2010)CrossRefGoogle Scholar
- [41]H.W. Luo, C.H. Qiu, H. Dong, J. Shi, J. Mater. Sci. Technol. 30, 1367 (2014)CrossRefGoogle Scholar
- [42]Z.D. Li, Z.G. Yang, C. Zhang, Z.Q. Liu, Mater. Sci. Eng. A 527, 4406 (2010)CrossRefGoogle Scholar
- [43]B.X. Wang, X.H. Liu, G.D. Wang, Mater. Des. 30, 2198 (2009)CrossRefGoogle Scholar
- [44]B. Li, Q.Y. Liu, S.J. Jia, Y. Ren, B. Wang, Scr. Mater. 152, 132 (2018)CrossRefGoogle Scholar
- [45]B. Li, Q.Y. Liu, S.J. Jia, Y. Ren, B. Wang, Acta Metall. Sin. (Engl. Lett.) 31, 1038 (2018)CrossRefGoogle Scholar
- [46]Y. Okisu, N. Takata, N. Tsuji, Scr. Mater. 60, 76 (2009)CrossRefGoogle Scholar
- [47]K. Hase, N. Tsuji, Scr. Mater. 65, 404 (2011)CrossRefGoogle Scholar
- [48]P. Uranga, A.I. Fernandez, B. Lopez, J.M. Rodriguez-Ibabe, Mater. Sci. Eng. A 345, 319 (2003)CrossRefGoogle Scholar
- [49]L. Cheng, Y.L. Chen, Q.W. Cai, W. Yu, G. Han, E.T. Dong, X. Li, Mater. Sci. Eng. A 68, 117 (2017)CrossRefGoogle Scholar
- [50]A. Imandoust, A. Zarei-Hanzaki, H.R. Abedi, Scr. Mater. 67, 995 (2012)CrossRefGoogle Scholar
- [51]X.Z. Chen, Y.M. Huang, J. Alloys Compd. 619, 564 (2015)CrossRefGoogle Scholar
- [52]P. Gong, E.J. Palmiere, W.M. Rainforth, Acta Mater. 119, 43 (2016)CrossRefGoogle Scholar