Advertisement

Acta Metallurgica Sinica (English Letters)

, Volume 32, Issue 12, pp 1521–1529 | Cite as

Torsional Fatigue Cracking and Fracture Behaviors of Cold-Drawn Copper: Effects of Microstructure and Axial Stress

  • Rong-Hua LiEmail author
  • Peng ZhangEmail author
  • Zhe-Feng Zhang
Article
  • 67 Downloads

Abstract

The fatigue cracking and fracture behavior of cold-drawn copper subjected to cyclic torsional loading were investigated in this study. It was found that with increasing stress amplitude, the fracture mode of cold-drawn copper gradually changes from a shear fracture on transverse maximum shear stress plane to a mixed shear mode on both transverse and longitudinal shear planes and finally turns to the shear fracture on multiple longitudinal shear planes. Combining the cracking morphology and the relationship between torsional fatigue cracking and the grain boundaries, the fracture mechanism of cold-drawn copper under cyclic torsional loading was analyzed and proposed by considering the effects of the microstructure and axial stress caused by torsion. Because of the promotion of the grain boundary distribution on longitudinal crack propagation and the inhibition of axial stress on transverse crack grown, the tendency of crack propagation along the longitudinal direction increases with increasing stress levels.

Keywords

Torsion Fatigue behavior Crack propagation Fracture mechanisms Axial stress Copper 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51771208) and the Natural Science Foundation of Liaoning (No. 2019-ZD-0059).

References

  1. [1]
    E.K. Tschegg, Theor. Appl. Fract. Mec. 3, 157 (1985)CrossRefGoogle Scholar
  2. [2]
    A. Fatemi, R. Molaei, S. Sharifimehr, N. Shamsaei, N. Phan, Int. J. Fatigue 99, 187 (2017)CrossRefGoogle Scholar
  3. [3]
    R.F. Martins, L. Ferreira, L. Reis, P. Chambel, Theor. Appl. Fract. Mec. 85, 56 (2016)CrossRefGoogle Scholar
  4. [4]
    Z.Z. Hu, Y.S. Wu, H.P. Cai, L.H. Ma, Acta Metall. Sin. (Engl. lett.) 4, 123 (1991)Google Scholar
  5. [5]
    R.H. Li, P. Zhang, Z.F. Zhang, Mater. Sci. Eng. A 574, 113 (2013)CrossRefGoogle Scholar
  6. [6]
    C. Makabe, D.F. Socie, T. Sueyoshi, Fatigue Fract. Eng. Mater. Struct. 27, 669 (2004)CrossRefGoogle Scholar
  7. [7]
    Q. Wang, Q. Sun, L. Xiao, J. Sun, Mater. Sci. Eng. A 649, 359 (2016)CrossRefGoogle Scholar
  8. [8]
    J.Y. Zhang, Q.S. Xiao, X.H. Shi, B.J. Fei, Int. J. Fatigue 67, 173 (2014)CrossRefGoogle Scholar
  9. [9]
    P. Davoli, A. Bernasconi, M. Filippini, S. Foletti, I.V. Papadopoulos, Int. J. Fatigue 25, 471 (2003)CrossRefGoogle Scholar
  10. [10]
    D. McClaflin, A. Fatemi, Int. J. Fatigue 26, 773 (2004)CrossRefGoogle Scholar
  11. [11]
    L. Pallarés-Santasmartasa, J. Albizuria, A. Avilésb, N. Saintierc, J. Merzeauc, Int. J. Fatigue 113, 54 (2018)CrossRefGoogle Scholar
  12. [12]
    B.M. Schonbauer, K. Yanase, M. Endo, Int. J. Fatigue 100, 540 (2017)CrossRefGoogle Scholar
  13. [13]
    H.Q. Xue, C. Bathias, Eng. Fract. Mech. 77, 1866 (2010)CrossRefGoogle Scholar
  14. [14]
    W. Kim, C. Laird, Acta Metall. 26, 789 (1978)CrossRefGoogle Scholar
  15. [15]
    P.J.E. Forsyth, Acta Metall. 11, 703 (1963)CrossRefGoogle Scholar
  16. [16]
    E. Bruder, C. Gangaraju, R. Lapovok, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 711, 650 (2018)CrossRefGoogle Scholar
  17. [17]
    M.J. Adinoyi, N. Merah, J. Albinmousa, Int. J. Fatigue 117, 101 (2018)CrossRefGoogle Scholar
  18. [18]
    J. Albinmousa, H. Jahed, S. Lambert, Int. J. Fatigue 33, 1403 (2011)CrossRefGoogle Scholar
  19. [19]
    G. Dieter (ed.), Mechanical Metallurgy (McGraw-Hill Book Company, London, 1988)Google Scholar
  20. [20]
    Z.F. Zhang, Z.G. Wang, Acta Mater. 51, 347 (2003)CrossRefGoogle Scholar
  21. [21]
    R.H. Li, Z.J. Zhang, P. Zhang, Z.F. Zhang, Acta Mater. 61, 5857 (2013)CrossRefGoogle Scholar
  22. [22]
    A. Nadai (ed.), Theory of Folw and Fracture of Solids (McGraw-Hill Book Company, New York, 1950)Google Scholar
  23. [23]
    E.K. Tschegg, J. Mater. Sci. 18, 1604 (1983)CrossRefGoogle Scholar
  24. [24]
    Z.F. Zhang, Z.G. Wang, Prog. Mater Sci. 53, 1025 (2008)CrossRefGoogle Scholar
  25. [25]
    V. Doquet, Fatigue Fract. Eng. Mater. Struct. 20, 227 (1997)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mechanical EngineeringLiaoning Shihua UniversityFushunChina
  2. 2.Laboratory of Fatigue and Fracture for Materials, Institute of Metal ResearchChinese Academy of SciencesShenyangChina

Personalised recommendations