Acta Metallurgica Sinica (English Letters)

, Volume 32, Issue 12, pp 1470–1482 | Cite as

Corrosion and Cavitation Erosion Behaviours of Cast Nickel Aluminium Bronze in 3.5% NaCl Solution with Different Sulphide Concentrations

  • Qi-Ning SongEmail author
  • Nan Xu
  • Yao Tong
  • Chen-Ming Huang
  • Shou-Yu Sun
  • Chen-Bo Xu
  • Ye-Feng Bao
  • Yong-Feng Jiang
  • Yan-Xin Qiao
  • Zhi-Yuan Zhu
  • Zheng-Bin Wang


The effect of sulphide (Na2S) concentration (SC) on the corrosion and cavitation erosion behaviours of a cast nickel aluminium bronze (NAB) in 3.5% NaCl solution is investigated in this study. The results show that when the SC exceeds 50 ppm, the hydrogen evolution reaction dominates the cathodic process, and a limiting current region appears in the anodic branch of the polarisation curve due to the formation of a copper sulphide film, which is a diffusion-controlled process. After long-term immersion, the increased mass loss rate of NAB with the sulphide additions of 20 and 50 ppm is attributed to the less protective films, which contains a mixture of copper oxides and sulphides. Moreover, NAB undergoes severe localised corrosion (selective phase corrosion, SPC) at the β′ phases and eutectoid microstructure α + κIII. By comparison, NAB undergoes general corrosion and a copper sulphide film is formed in 100 and 200 ppm sulphide solutions. Cavitation erosion greatly increases the corrosion rate of NAB in all solutions and causes a negative potential shift in 3.5% NaCl solution due to the film destruction. However, a positive potential shift occurs in the solutions with SC higher than 50 ppm due to the accelerated mass transfer of the cathodic process. The cavitation erosion mass loss rate of NAB increases with the increase of SC. The occurrence of severe SPC decreases the phase boundary cohesion and causes brittle fracture under the cavitation impact. The corrosion–enhanced erosion is the most predominant factor for the cavitation erosion damage when the SC exceeds 50 ppm.


Nickel aluminium bronze Sulphide Corrosion Cavitation erosion Synergy 



This research was financially supported by the National Natural Science Foundation of China (Nos. 51601058 and 51879089), the Fundamental Research Funds for the Central Universities of P.R. China (No. 2018B59614), the Natural Science Foundation of Jiangsu Province (BK20191161), the Changzhou Sci & Tech Program (Grant No. CJ20180045) and the first group of 2011 plan of China’s Jiangsu province (Grant No. [2013] 56) (Cooperative Innovational Center for Coastal Development & Protection).


  1. [1]
    J.A. Wharton, R.C. Barik, G. Kear, R.J.K. Wood, K.R. Stokes, F.C. Walsh, Corros. Sci. 47, 3336 (2005)Google Scholar
  2. [2]
    A. Schussler, H.E. Exner, Corros. Sci. 34, 1793 (1993)Google Scholar
  3. [3]
    A.H. Tuthill, Mater. Perform. 26, 12 (1987)Google Scholar
  4. [4]
    B.G. Ateya, E.A. Ashour, S.M. Sayed, J. Electrochem. Soc. 141, 71 (1994)Google Scholar
  5. [5]
    A.L. Ma, S.L. Jiang, Y.G. Zheng, W. Ke, Corros. Sci. 91, 245 (2015)Google Scholar
  6. [6]
    W.A. Badawy, M. El-Rabiee, N.H. Helal, H. Nady, Electrochim. Acta 71, 50 (2012)Google Scholar
  7. [7]
    G. Šekularac, I. Milošev, Corros. Sci. 144, 54 (2018)Google Scholar
  8. [8]
    A.S. Hamdy, M.A. Shoeib, Y. Barakat, Electrochim. Acta 52, 7068 (2007)Google Scholar
  9. [9]
    J.L. Tang, X. Yang, Y.Y. Wang, H. Wang, Y. Xiao, M. Apreutesei, Z. Nie, B. Normand, Metals 9, 294 (2019)Google Scholar
  10. [10]
    X. Yang, C. Du, H. Wan, Z. Liu, X. Li, Appl. Surf. Sci. 458, 198 (2018)Google Scholar
  11. [11]
    K. Rahmouni, M. Keddam, A. Srhiri, H. Takenouti, Corros. Sci. 47, 3249 (2005)Google Scholar
  12. [12]
    N.K. Awad, E.A. Ashour, N.K. Allam, Appl. Surf. Sci. 346, 158 (2015)Google Scholar
  13. [13]
    S.J. Yuan, S.O. Pehkonen, Corros. Sci. 49, 1276 (2017)Google Scholar
  14. [14]
    L.E. Eiselstein, B.C. Syrett, S.S. Wing, R.D. Caligiuri, Corros. Sci. 23, 223 (1983)Google Scholar
  15. [15]
    S.M. Sayed, E.A. Ashour, G.I. Youssef, Chem. Phys. 78, 825 (2003)Google Scholar
  16. [16]
    Q.N. Song, N. Xu, Y.F. Bao, Y.F. Jiang, W. Gu, Y.G. Zheng, Y.X. Qiao, Acta Metall. Sin. (Engl. Lett.) 30, 712 (2017)Google Scholar
  17. [17]
    Y.Y. Song, H.W. Shi, J. Wang, F.C. Liu, E.H. Han, W. Ke, G.X. Jie, J. Wang, H.J. Huang, Acta Metall. Sin. (Engl. Lett.) 30, 1201 (2017)Google Scholar
  18. [18]
    M. Hazra, K.P. Balan, Eng. Fail. Anal. 70, 141 (2016)Google Scholar
  19. [19]
    S.Z. Li, X.X. Jiang, H.Y. Bi, S. Li, Wear 225–229, 1025 (1999)Google Scholar
  20. [20]
    E.A. Ashour, L.A. Khorshed, G.I. Youssef, H.M. Zakria, T.A. Khalifa, Mater. Sci. Appl. 5, 10 (2014)Google Scholar
  21. [21]
    N. Taniguchi, M. Kawasaki, J. Nucl. Mater. 379, 154 (2008)Google Scholar
  22. [22]
    Q. Luo, Q. Zhang, Z.B. Qin, Z. Wu, B. Shen, L. Liu, W.B. Hu, J. Alloys Compd. 747, 861 (2018)Google Scholar
  23. [23]
    Y.X. Qiao, S. Wang, B. Liu, Y.G. Zheng, H.B. Li, Z.H. Jiang, Acta Metall. Sin. 52, 233 (2016)Google Scholar
  24. [24]
    C.T. Kwok, F.T. Cheng, H.C. Man, Mater. Sci. Eng. A 290, 145 (2000)Google Scholar
  25. [25]
    C.T. Kwok, H.C. Man, L.K. Leung, Wear 211, 84 (1997)Google Scholar
  26. [26]
    ASTM G32–10, Standard Test Method for Cavitation Erosion Using Vibratory Apparatus (2010)Google Scholar
  27. [27]
    F. Hasan, G.W. Lorimer, N. Eidley, Metall. Trans. A 13A, 1337 (1982)Google Scholar
  28. [28]
    E.A. Culpan, G. Rose, J. Mater. Sci. 13, 1647 (1978)Google Scholar
  29. [29]
    D.C. Kong, C.F. Dong, X.Q. Ni, A.N. Xu, C. He, K. Xiao, X.G. Li, Mater. Corros. 68, 1070 (2017)Google Scholar
  30. [30]
    J. Chen, D.W. Shoesmith, J. Electrochem. Soc. 157, C338 (2010)Google Scholar
  31. [31]
    J.A. Wharton, K.R. Stokes, Electrochim. Acta 53, 2463 (2008)Google Scholar
  32. [32]
    G. Kear, B.D. Barker, F.C. Walsh, Corros. Sci. 46, 109 (2004)Google Scholar
  33. [33]
    T. Martino, J. Smith, J. Chen, Z. Qin, J.J. Noël, D.W. Shoesmith, J. Electrochem. Soc. 166, C9 (2019)Google Scholar
  34. [34]
    J. Chen, Z. Qin, L. Wu, J.J. Noël, D.W. Shoesmith, Corros. Sci. 87, 233 (2014)Google Scholar
  35. [35]
    J. Chen, Z. Qin, D.W. Shoesmith, Electrochim. Acta 56, 7854 (2011)Google Scholar
  36. [36]
    Q.N. Song, Y.G. Zheng, D.R. Ni, Z.Y. Ma, Corrosion 71, 606 (2015)Google Scholar
  37. [37]
    T. Martino, R. Partovi-Nia, J. Chen, Z. Qin, D.W. Shoesmith, Electrochim. Acta 127, 439 (2014)Google Scholar
  38. [38]
    B.C. Syrett, Corros. Sci. 21, 187 (1981)Google Scholar
  39. [39]
    Q.N. Song, Y.G. Zheng, D.R. Ni, Z.Y. Ma, Corros. Sci. 92, 95 (2015)Google Scholar
  40. [40]
    S. Neodo, D. Carugo, J.A. Wharton, K.R. Stokes, J. Electroanal. Chem. 695, 38 (2013)Google Scholar
  41. [41]
    E.A. Culpan, G. Rose, Br. Corros. J. 14, 160 (1979)Google Scholar
  42. [42]
    Y.G. Zheng, S.Z. Luo, W. Ke, Wear 262, 1308 (2007)Google Scholar
  43. [43]
    Y.G. Zheng, S.Z. Luo, W. Ke, Tribol. Int. 41, 1181 (2008)Google Scholar
  44. [44]
    Y.X. Qiao, Z.H. Tian, X. Cai, J. Chen, Y.X. Wang, Q.N. Song, H.B. Li, Tribol. Lett. 67, 1 (2019)Google Scholar
  45. [45]
    Q.N. Song, Y.G. Zheng, S.L. Jiang, D.R. Ni, Z.Y. Ma, Corrosion 69, 1111 (2013)Google Scholar

Copyright information

© The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Qi-Ning Song
    • 1
    Email author
  • Nan Xu
    • 1
  • Yao Tong
    • 1
  • Chen-Ming Huang
    • 1
  • Shou-Yu Sun
    • 1
  • Chen-Bo Xu
    • 1
  • Ye-Feng Bao
    • 1
  • Yong-Feng Jiang
    • 1
  • Yan-Xin Qiao
    • 2
  • Zhi-Yuan Zhu
    • 2
  • Zheng-Bin Wang
    • 3
  1. 1.College of Mechanical and Electrical EngineeringHohai UniversityChangzhouChina
  2. 2.College of Materials Science and EngineeringJiangsu University of Science and TechnologyZhenjiangChina
  3. 3.Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal ResearchChinese Academy of SciencesShenyangChina

Personalised recommendations