Advertisement

Effect of Shoulder Diameter on the Force Generation, Microstructure and Mechanical Properties of Friction Stir-Brazed Aluminium Alloy and Copper with Ultrahigh Rotation Speed

  • Yang Zhou
  • Shujin ChenEmail author
  • Di Wang
  • Ruifeng Li
  • Bin Liu
  • Juan Pu
  • Zhidong Yang
Article
  • 22 Downloads

Abstract

Friction stir brazing with ultrahigh rotation speed was applied to 6061 aluminium alloy–pure copper lap joints with the aid of zinc foil. The effects of different shoulder diameters from 7 to 15 mm on the microstructure and mechanical properties of Al/Cu FSB joints were investigated along with the temperature and resistance of the friction tool. The oscillation of forward resistance and lateral force was related to the flow of the plastic metal and contributed to obtain a good appearance during the welding process. From the appearance of the welded joints, it was obvious that the phase difference between the forward resistance and lateral force had a significant influence on the joint characteristics. Obvious scale-like ripples appeared on the weld area when a sharp angle in the phase difference curve existed. Additionally, with a lower axial force and oscillation assistance, a satisfactory joint could be obtained. The results of the shear strength of the brazed joint showed that the shoulder with a 12 mm diameter yielded the highest shear strength. Meanwhile, the zinc foil in the middle melted completely and formed finely dispersed CuZn5 Al–Zn eutectic structures at the Al–Cu interface.

Keywords

Friction stir brazing Ultrahigh rotation speed Zn foil Forward resistance Lateral force 

References

  1. [1]
    Z.L. Hu, Q. Pang, M.L. Dai, Rare Met. 5, 1 (2018)Google Scholar
  2. [2]
    B. Li, Y. Shen, L. Luo, W. Hu, Z. Zhang, Mater. Des. 49, 647 (2013)CrossRefGoogle Scholar
  3. [3]
    F.B. Argesi, A. Shamsipur, S.E. Mirsalehi, Acta Metall. Sin. (Engl. Lett.) 31, 1183 (2018)CrossRefGoogle Scholar
  4. [4]
    G.K. Padhy, C.S. Wu, S. Gao, J. Mater. Sci. Technol. 34, 1 (2018)CrossRefGoogle Scholar
  5. [5]
    C. Otten, U. Reisgen, M. Schmachtenberg, Weld. World. 60, 21 (2016)CrossRefGoogle Scholar
  6. [6]
    Z. Xue, S. Hu, J. Shen, D. Zuo, K.A. Jr, J. Laser. Appl. 26, 2002 (2013)Google Scholar
  7. [7]
    R.N. Raoelison, T. Sapanathan, N. Buiron, M. Rachik, J. Manuf. Process. 20, 112 (2015)CrossRefGoogle Scholar
  8. [8]
    G.H. Carvalho, I. Galvão, R. Mendes, R.M. Leal, A. Loureiro, Sci. Technol. Weld. Join. 23, 501 (2018)CrossRefGoogle Scholar
  9. [9]
    C.Z. Xia, Y.J. Li, U.A. Puchkov, S.A. Gerasimov, J. Wang, Met. Sci. 25, 383 (2009)Google Scholar
  10. [10]
    G.F. Zhang, K. Zhang, Y. Guo, J.X. Zhang, Metallogr. Microstruct. Anal. 3, 272 (2014)CrossRefGoogle Scholar
  11. [11]
    C. Xia, Y. Li, U.A. Puchkov, S.A. Gerasimove, J. Wang, Met. Sci. 23, 815 (2008)Google Scholar
  12. [12]
    P. Xue, B.L. Xiao, D. Wang, Z.Y. Ma, Sci. Technol. Weld. Join. 16, 657 (2011)CrossRefGoogle Scholar
  13. [13]
    M.M. Khalilabad, Y. Zedan, D. Texier, M. Jahazi, P. Bocher, J. Manuf. Process. 34, 86 (2018)CrossRefGoogle Scholar
  14. [14]
    B. Kuang, Y. Shen, W. Chen, X. Yao, H. Xu, J. Gao, J. Zhang, Mater. Des. 68, 54 (2015)CrossRefGoogle Scholar
  15. [15]
    G. Huang, X. Feng, Y. Shen, Q. Zheng, P. Zhao, Mater. Des. 99, 403 (2016)CrossRefGoogle Scholar
  16. [16]
    A. Abdollah-Zadeh, T. Saeid, B. Sazgari, J. Alloys Compd. 460, 535 (2008)CrossRefGoogle Scholar
  17. [17]
    Y. Xiao, Study on The Metallurgic Bonding Mechanism and Properties of Liquid Phase Brazed Cu/Al Joints with The Assistance of Ultrasound, Ph.D. Thesis, Harbin Institute of Technology, 2014 (in Chinese) Google Scholar
  18. [18]
    K.J. Quintana, J.L. Silveira, Int. J. Adv. Manuf. Technol. 96, 3993 (2018)CrossRefGoogle Scholar
  19. [19]
    S.J. Chen, Y. Zhou, J. Xue, R.Y. Ni, Y. Guo, J. Dong, J. Mater. Eng. Perform. 26, 1 (2017)CrossRefGoogle Scholar
  20. [20]
    E.Y. Ahn, H. Das, S.T. Hong, K.S. Han, M. Miles, K.J. Lee, J. Mech. Sci. Technol. 31, 3955 (2017)CrossRefGoogle Scholar
  21. [21]
    P. Sevvel, V. Jaiganesh, Trans. Indian Inst. Met. 68, 41 (2015)CrossRefGoogle Scholar
  22. [22]
    J.I. Murray, Bull. Alloy Phase Diagr. 4, 55 (1983)CrossRefGoogle Scholar
  23. [23]
    R. Balasundaram, V.K. Patel, S.D. Bhole, D.L. Chen, Mater. Sci. Eng. A 607, 277 (2014)CrossRefGoogle Scholar
  24. [24]
    C.Y. Chen, W.S. Huang, Mater. Trans. 48, 1938 (2007)CrossRefGoogle Scholar
  25. [25]
    Y. Xiao, H. Ji, M. Li, J. Kim, Mater. Sci. Eng. A 594, 135 (2014)CrossRefGoogle Scholar
  26. [26]
    G.F. Zhang, K. Zhang, L.J. Zhang, J.X. Zhang, Sci. Technol. Weld. Join. 19, 554 (2014)CrossRefGoogle Scholar
  27. [27]
    H. Liang, Y.A. Chang, J. Phase Equilib. Diffus. 19, 25 (1998)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yang Zhou
    • 1
    • 2
  • Shujin Chen
    • 2
    Email author
  • Di Wang
    • 2
  • Ruifeng Li
    • 2
  • Bin Liu
    • 2
  • Juan Pu
    • 2
  • Zhidong Yang
    • 2
  1. 1.School of Computer Science and EngineeringJiangsu University of Science and TechnologyZhenjiangChina
  2. 2.School of Material Science and EngineeringJiangsu University of Science and TechnologyZhenjiangChina

Personalised recommendations