Advertisement

Electrochemical Performance of Passive Film Formed on Ti–Al–Nb–Zr Alloy in Simulated Deep Sea Environments

  • Jing-Jing Dong
  • Lin FanEmail author
  • Hai-Bing Zhang
  • Li-Kun Xu
  • Li-Li Xue
Article
  • 31 Downloads

Abstract

Titanium alloy Ti–Al–Nb–Zr has high specific strength and becomes a promising structural material used in the deep sea. The excellent corrosion resistance of the alloy is derived from the protective passive film formed on its surface. By now, full agreement on interpretation of the anti-corrosion performance of the film in marine environment, especially in the deep sea, has not been reached. In this work, the electrochemical performance of two-surface-state Ti–Al–Nb–Zr alloys which are treated by mechanical polishing and anodizing pre-passivation in the simulated shallow sea, 1000 m and 3000 m deep sea environments, is investigated. By interpreting the electrochemical kinetic parameters, it is found that the dominant cathodic process becomes hydrogen evolution in simulated deep sea environments, but the reduction rate is restrained by high hydrostatic pressure, which arrests the passivation of the alloy. Assisted by X-ray photoelectron spectroscopy analysis, it is found that the passive film mainly consists of titanium oxides. There are intermediate oxides with non-stoichiometric ratio involved in the film formation due to the low dissolved oxygen concentration and low temperature. The results of Mott–Schottky and electrochemical impedance show that the film has n-type semiconducting property with oxygen vacancies as the main point defects. The anti-corrosion performance in simulated deep sea environments is one order of magnitude lower than that in the simulated shallow sea environment. However, from 1000 to 3000 m, the corrosion resistance is reduced very slightly. In the inner layers of the passive film and the passive film formed in simulated deep sea environments, the proportion of low-valence titanium oxides is relatively high. The doping of low-valence titanium (Ti(II) or Ti(III)) results in a porous structure and ion permeability of the passive film, as well as relatively low corrosion resistance.

Keywords

Titanium alloy Oxide layer Marine environment Corrosion resistance Mott–Schottky 

Notes

Acknowledgements

This work was financially supported by the National Key Basic Research Program of China (Grant No. 2017-JCJQ-ZD-024).

References

  1. [1]
    A.K. Shukla, R. Balasubramaniam, S. Bhargava, Intermetallics 13, 631 (2005)CrossRefGoogle Scholar
  2. [2]
    S. Barison, S. Cattarin, S. Daolio, M. Musiani, A. Tuissi, Electrochim. Acta 50, 11 (2004)CrossRefGoogle Scholar
  3. [3]
    K. Zhu, N. Gui, T. Jiang, M. Zhu, X. Lu, J.Y. Zhang, C.H. Li, Metall. Mater. Trans. A 45, 1761 (2014)CrossRefGoogle Scholar
  4. [4]
    B. Munirathinam, R. Narayanan, L. Neelakantan, Thin Solid Films 598, 260 (2016)CrossRefGoogle Scholar
  5. [5]
    J. Dai, J. Zhu, C. Chen, F. Weng, J. Alloys Compd. 685, 784 (2016)CrossRefGoogle Scholar
  6. [6]
    T. Li, J.R. Scully, G.S. Frankel, J. Electrochem. Soc. 165, C762 (2018)CrossRefGoogle Scholar
  7. [7]
    J. Pang, D.J. Blackwood, Corros. Sci. 105, 17 (2016)CrossRefGoogle Scholar
  8. [8]
    Z. Cui, L. Wang, M. Zhong, F. Ge, H. Gao, C. Man, C. Liu, X. Wang, J. Electrochem. Soc. 165, C542 (2018)CrossRefGoogle Scholar
  9. [9]
    A.C. Alves, F. Wenger, P. Ponthiaux, J.-P. Celis, A.M. Pinto, L.A. Rocha, J.C.S. Fernandes, Electrochim. Acta 234, 16 (2017)CrossRefGoogle Scholar
  10. [10]
    S.A. Policastro, R.M. Anderson, D.F. Roeper, D.J. Horton, Electrochim. Acta 224, 419 (2017)CrossRefGoogle Scholar
  11. [11]
    N. Khayatan, H.M. Ghasemi, M. Abedini, Wear 380–381, 154 (2017)CrossRefGoogle Scholar
  12. [12]
    D. Wei, X. Chen, P. Zhang, F. Ding, F. Li, Z. Yao, Appl. Surf. Sci. 441, 448 (2018)CrossRefGoogle Scholar
  13. [13]
    N. Dai, L. Zhang, J. Zhang, Q. Chen, M. Wu, Corros. Sci. 102, 484 (2016)CrossRefGoogle Scholar
  14. [14]
    T. Zhang, Y. Yang, Y. Shao, G. Meng, F. Wang, Electrochim. Acta 54, 3915 (2009)CrossRefGoogle Scholar
  15. [15]
    G. Duan, L. Yang, S. Liao, C. Zhang, X. Lu, Y. Yang, B. Zhang, Y. Wei, T. Zhang, B. Yu, X. Zhang, F. Wang, Corros. Sci. 135, 197 (2018)CrossRefGoogle Scholar
  16. [16]
    Q. Hu, Y. Liu, T. Zhang, S. Geng, F. Wang, J. Mater. Sci. Technol. 35, 168 (2019)CrossRefGoogle Scholar
  17. [17]
    T.M. Serikov, NKh Ibrayev, N. Nuraje, S.V. Savilov, V.V. Lunin, Russ. Chem. Bull. 66, 614 (2017)CrossRefGoogle Scholar
  18. [18]
    Y. Huang, D.J. Blackwood, Electrochim. Acta 51, 1099 (2005)CrossRefGoogle Scholar
  19. [19]
    S.L. de Assis, S. Wolynec, I. Costa, Electrochim. Acta 51, 1815 (2006)CrossRefGoogle Scholar
  20. [20]
    A.U. Chaudhry, B. Mansoor, T. Mungole, G. Ayuob, D.P. Field, Electrochim. Acta 264, 69 (2018)CrossRefGoogle Scholar
  21. [21]
    S.M. Bhola, R. Bhola, B. Mishra, D.L. Olson, J. Mater. Sci. 45, 6179 (2010)CrossRefGoogle Scholar
  22. [22]
    J.N. Laboulais, A.A. Mata, V.A. Borrás, A.I. Muñoz, Electrochim. Acta 227, 410 (2017)CrossRefGoogle Scholar
  23. [23]
    M.C.K. Sellers, E.G. Seebauer, Thin Solid Films 519, 2103 (2011)CrossRefGoogle Scholar
  24. [24]
    Z. Cui, L. Wang, H. Ni, W. Hao, C. Man, S. Chen, X. Wang, Z. Liu, X. Li, Corros. Sci. 118, 31 (2017)CrossRefGoogle Scholar
  25. [25]
    Z. Cui, S. Chen, L. Wang, C. Man, Z. Liu, J. Wu, X. Wang, S. Chen, X. Li, J. Electrochem. Soc. 164, C856 (2017)CrossRefGoogle Scholar
  26. [26]
    N. Comisso, L. Armelao, S. Cattarin, P. Guerriero, L. Mattarozzi, M. Musiani, M. Rancan, L. Vázquez-Gómez, E. Verlato, Electrochim. Acta 273, 454 (2018)CrossRefGoogle Scholar
  27. [27]
    H. Tian, X. Wang, Z. Cui, Q. Lu, L. Wang, L. Lei, Y. Li, D. Zhang, Corros. Sci. 144, 145 (2018)CrossRefGoogle Scholar
  28. [28]
    F. Sun, S. Ren, Z. Li, Z. Liu, X. Li, C. Du, Mater. Sci. Eng. A 685, 145 (2017)CrossRefGoogle Scholar
  29. [29]
    Y. Yang, T. Zhang, Y. Shao, G. Meng, F. Wang, Corros. Sci. 52, 2697 (2010)CrossRefGoogle Scholar
  30. [30]
    T. Zhao, Z. Liu, C. Du, M. Sun, X. Li, Int. J. Fatigue 110, 105 (2018)CrossRefGoogle Scholar
  31. [31]
    Y. Doi, M. Tamaki, Inorg. Chim. Acta 64, L145 (1982)CrossRefGoogle Scholar
  32. [32]
    Z. Yang, B. Kan, J. Li, Y. Su, L. Qiao, J. Electroanal. Chem. 822, 123 (2018)CrossRefGoogle Scholar
  33. [33]
    A. Chojnacka, J. Kawalko, H. Koscielny, J. Guspiel, A. Drewienkiewicz, M. Bieda, W. Pachla, M. Kulczyk, K. Sztwiertnia, E. Beltowska-Lehman, Appl. Surf. Sci. 426, 987 (2017)CrossRefGoogle Scholar
  34. [34]
    R. Roy, W.B. White, J. Crystal Growth 13–14, 78 (1972)CrossRefGoogle Scholar
  35. [35]
    S.H. Hong, Acta Chem. Scand. 36, 207 (1982)CrossRefGoogle Scholar
  36. [36]
    W. Liu, X. Cao, S. Peng, X. Long, S. Luo, W. Wang, Surf. Technol. 36, 51 (2007)Google Scholar
  37. [37]
    H. Luo, H. Su, C. Dong, X. Li, Appl. Surf. Sci. 400, 38 (2017)CrossRefGoogle Scholar
  38. [38]
    A. Fattah-Alhosseini, M. Naseri, S.O. Gashti, S. Vafaeian, M.K. Keshavarz, Corros. Sci. 131, 81 (2018)CrossRefGoogle Scholar
  39. [39]
    K. Liu, J.G. Duh, J. Mater. Sci. 43, 3589 (2008)CrossRefGoogle Scholar
  40. [40]
    Y. Zuo, R. Pang, W. Li, J. Xiong, Y. Tang, Corros. Sci. 50, 3322 (2008)CrossRefGoogle Scholar
  41. [41]
    N.A. Sapoletova, S.E. Kushnir, K.S. Napolskii, Electrochem. Commun. 91, 5 (2018)CrossRefGoogle Scholar
  42. [42]
    C. da Fonseca, S. Boudin, Belo M. da Cunha, J. Electroanal. Chem. 379, 173 (1994)CrossRefGoogle Scholar
  43. [43]
    J. Amri, T. Souier, B. Malki, B. Baroux, Corros. Sci. 50, 431 (2008)CrossRefGoogle Scholar
  44. [44]
    Z. Cui, S. Chen, Y. Dou, S. Han, L. Wang, C. Man, X. Wang, S. Chen, Y.F. Cheng, X. Li, Corros. Sci. 150, 218 (2019)CrossRefGoogle Scholar
  45. [45]
    J.G. Odhiambo, L. Zhang, T. Liu, L. Dong, Y. Yin, Appl. Mech. Mater. 513–517, 189 (2014)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jing-Jing Dong
    • 1
    • 2
  • Lin Fan
    • 2
    Email author
  • Hai-Bing Zhang
    • 2
  • Li-Kun Xu
    • 2
  • Li-Li Xue
    • 1
  1. 1.College of Material Science and Chemical EngineeringHarbin Engineering UniversityHarbinChina
  2. 2.State Key Laboratory for Marine Corrosion and ProtectionLuoyang Ship Material Research InstituteQingdaoChina

Personalised recommendations