Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Residual Stress Removal Under Pulsed Electric Current

  • 100 Accesses

Abstract

The effect of a pulsed electric current on the residual stress evolution of metal materials has been investigated. It was found that the surface and internal residual stresses in the as-quenched samples were reduced dramatically by electropulsing. A large number of experimental data show that the residual stress reduction is proportional to the initial residual stress and related to the material properties and electropulsing parameters. Under the combined actions of drift electrons, Joule heating, and residual stress, the dislocation mobility was enhanced, resulting in plastic strain and the decrease in residual stress. Drift electrons played a unique role in the electropulsing treatment, acting as an additional force pushing dislocations forward. The dislocations ultimately accumulated at a grain boundary, forming a parallel arrangement. Finally, the phenomenological equation of the residual stress evolution under electropulsing was derived from the experimental data.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. [1]

    P.J. Withers, H. Bhadeshia, Mater. Sci. Technol. 17, 355 (2001)

  2. [2]

    P.J. Withers, H. Bhadeshia, Mater. Sci. Technol. 17, 366 (2001)

  3. [3]

    I.C. Noyan, J.B. Cohen, Residual Stress: Measurement by Diffraction and Interpretation (Springer, Berlin, 2013)

  4. [4]

    L. Guan, G. Tang, P.K. Chu, J. Mater. Res. 25, 1215 (2010)

  5. [5]

    N.E. Kir’yanchev, O. Troitskii, Probl. Prochn. 5, 101 (1983)

  6. [6]

    O.A. Troitsky, V.I. Likhtman, Sov. Phys. Dokl. 8, 91 (1963)

  7. [7]

    K. Okazaki, M. Kagawa, H. Conrad, Scr. Mater. 12, 1063 (1978)

  8. [8]

    K. Okazaki, M. Kagawa, H. Conrad, Scr. Mater. 13, 277 (1979)

  9. [9]

    K. Okazaki, M. Kagawa, H. Conrad, Scr. Mater. 13, 473 (1979)

  10. [10]

    H. Conrad, K. Okazaki, Kentucky Univ. Lexington, Department of Metallurgical Engineering and Materials Science (1979)

  11. [11]

    A.F. Sprecher, S.L. Mannan, H. Conrad, Acta Mater. 34, 1145 (1986)

  12. [12]

    H. Conrad, Mater. Sci. Eng. A 287, 276 (2000)

  13. [13]

    H. Conrad, Mater. Sci. Eng. A 322, 100 (2002)

  14. [14]

    X. Li, Y. Ye, R. Zhang, S.Z. Kure-Chu, G. Tang, Mater. Sci. Eng. A 742, 722 (2019)

  15. [15]

    Y. Ye, S.Z. Kure-Chu, Z. Sun, X. Li, H. Wang, G. Tang, Mater. Des. 149, 214 (2018)

  16. [16]

    Z. Xu, H. Wang, Z. Sun, Y. Ye, G. Tang, Mater. Sci. Technol. 33, 1454 (2017)

  17. [17]

    H. Wang, G. Song, G. Tang, Surf. Coat. Technol. 282, 149 (2015)

  18. [18]

    R.F. Zhu, J.N. Liu, G.Y. Tang, S.Q. Shi, M.W. Fu, Z.T.H. Tse, J. Alloys Compd. 584, 225 (2014)

  19. [19]

    Y.D. Ye, X.P. Li, Z.Y. Sun, H.B. Wang, G.Y. Tang, Acta Metall. Sin. (Engl. Lett.) 31, 1265 (2018)

  20. [20]

    X.P. Li, S.Z. Kure-Chu, T. Ogasawara, H. Yashiro, H.B. Wang, Z.Z. Xu, G.Y. Tang, Acta Metall. Sin. (Engl. Lett.) 31, 1258 (2018)

  21. [21]

    J.Y. Gao, X.B. Liu, H.F. Zhou, X.F. Zhang, Acta Metall. Sin. (Engl. Lett.) 31, 1240 (2018)

  22. [22]

    Y.H. Zhu, C.M. Luk, Acta Metall. Sin. (Engl. Lett.) 31, 1361 (2018)

  23. [23]

    Z. Sun, H. Wang, Y. Ye, Z. Xu, G. Tang, Int. J. Adv. Manuf. Technol. 95, 2835 (2018)

  24. [24]

    B. Kinsey, G. Cullen, A. Jordan, S. Mates, CIRP Ann. 62, 279 (2013)

  25. [25]

    H. Xie, X. Dong, K. Liu, Z. Ai, F. Peng, Q. Wang, J. Wang. Mater. Sci. Eng. A 637, 23 (2015)

  26. [26]

    Y.I. Ragozin, I.V. Polianin, in Proceedings of the Fourth International Conference on Residual Stresses, vol. 926 (1994)

  27. [27]

    G.V. Stepanov, A.I. Babutskii, I.A. Mameev, M. Ferraris, V. Casalegno, M. Salvo, Strength Mater. 40, 452 (2008)

  28. [28]

    L. Pan, B. Wang, Z. Xu, J. Alloys Compd. 792, 994 (2019)

  29. [29]

    G. Stepanov, A. Babutsky, L. Kruszka, Mater. Sci. Forum 638, 2429 (2010)

  30. [30]

    G.V. Stepanov, A.I. Babutskii, I.A. Mameev, Strength Mater. 41, 623 (2009)

  31. [31]

    J. Wang, X. He, B. Wang, J. Guo, Chin. J. Mater. Res. 21, 41 (2007)

  32. [32]

    W.L. He, BGu Pan, Mater. Sci. Eng. A 662, 404 (2016)

  33. [33]

    X. Huang, Mater. Sci. Eng. A 528, 6287 (2011)

  34. [34]

    N.S. Rossini, M. Dassisti, K.Y. Benyounis, A.G. Olabi, Mater. Des. 35, 572 (2012)

  35. [35]

    R. Gou, Y. Zhang, X. Xu, L. Sun, Y. Yang, NDT E Int. 44, 387 (2011)

  36. [36]

    Z. Wang, H. Song, J. Alloys Compd. 470, 522 (2009)

  37. [37]

    K. Okazaki, M. Kagawa, H. Conrad, Mater. Sci. Eng. 45, 109 (1980)

  38. [38]

    H. Conrad, A.F. Sprecher, in Dislocations in Solids, ed. by F.R.N. Nabarro (Elsevier, Amsterdam, 1989), p. 497

  39. [39]

    Y.L. Wei, A. Godfrey, W. Liu, Q. Liu, X. Huang, N. Hansen, G. Winther, Scr. Mater. 65, 355 (2011)

Download references

Acknowledgements

The work was financially supported by the National Natural Science Foundation of China (Nos. 51874023, 51601011 and U1860206), the Fundamental Research Funds for the Central Universities, Recruitment Program of Global Experts.

Author information

Correspondence to Xinfang Zhang.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xiang, S., Zhang, X. Residual Stress Removal Under Pulsed Electric Current. Acta Metall. Sin. (Engl. Lett.) 33, 281–289 (2020). https://doi.org/10.1007/s40195-019-00941-z

Download citation

Keywords

  • Electroplastic
  • Residual stress
  • Dislocation movement
  • Phenomenological equation