Improving Joint Morphologies and Tensile Strength of Al/Mg Dissimilar Alloys Friction Stir Lap Welding by Changing Zn Interlayer Thickness

  • Jinglin Liu
  • Shiyu Niu
  • Rong RenEmail author
  • Shude JiEmail author
  • Lei Wang
  • Zan Lv


The pure Zn foils with different thicknesses (0.02, 0.05, 0.1, 0.2 and 0.3 mm) were selected as interlayers to improve the quality of friction stir lap welding joint of 7075-T6 Al and AZ31B Mg dissimilar alloys. The effects of the interlayer thickness on joint formation, microstructure and tensile strength were analyzed. The results displayed that the maximum length of the boundary between stir zone (SZ) and thermo-mechanically affected zone in lower plate was obtained by the addition of the Zn interlayer with 0.05 mm thickness. The Mg–Zn intermetallic compounds (IMCs) were discontinuously distributed in the SZ, replacing the continuous Al–Mg IMCs. The size of Mg–Zn IMCs increased with the increase in the thickness of the Zn interlayer. The maximum tensile shear strength of 276 N mm−1 was obtained by the addition of 0.05 mm Zn foil, which increased by 45.6% of that of the joint without the Zn foil addition.


Al/Mg dissimilar alloys Friction stir lap welding Zn foil thickness Microstructure Tensile shear strength 



This work is supported by the National Natural Science Foundation of China (No. 51874201).


  1. [1]
    D. Mishra, R.B. Roy, S. Dutta, S.K. Pal, D. Chakravarty, J. Manuf. Process. 36, 373 (2018)CrossRefGoogle Scholar
  2. [2]
    F.B. Argesi, A. Shamsipur, S.E. Mirsalehi, Acta Metall. Sin. (Engl. Lett.) 31(11), 1183 (2018)CrossRefGoogle Scholar
  3. [3]
    R. Borrisutthekul, Y. Miyashita, Y. Mutoh, Sci. Technol. Adv. Mater. 6, 199 (2005)CrossRefGoogle Scholar
  4. [4]
    H.T. Zhang, J.Q. Song, Mater. Lett. 65, 3292 (2011)CrossRefGoogle Scholar
  5. [5]
    L.H. Shah, N.H. Othman, A. Gerlich, Sci. Technol. Weld. Join. 23, 256 (2018)CrossRefGoogle Scholar
  6. [6]
    H.J. Liu, H. Fujii, M. Maeda, K. Nogi, J. Mater. Process. Technol. 142, 692 (2003)CrossRefGoogle Scholar
  7. [7]
    W.S. Chang, S.R. Rajesh, C.K. Chun, H.J. Kim, J. Mater. Sci. Technol. 27, 199 (2011)CrossRefGoogle Scholar
  8. [8]
    Y.F. Wang, J. An, K. Yin, M.S. Wang, Y.S. Li, C.X. Huang, Acta Metall. Sin. (Engl. Lett.) 31(8), 878 (2018)CrossRefGoogle Scholar
  9. [9]
    W.F. Xu, Y.X. Luo, M.W. Fu, Mater. Charact. 138, 48 (2018)CrossRefGoogle Scholar
  10. [10]
    Y. Huang, X. Meng, Y. Xie, L. Wan, Z. Lv, J. Cao, J. Feng, Compos. Part A Appl. Sci. Manuf. 105, 235 (2018)CrossRefGoogle Scholar
  11. [11]
    Z.J. Yan, X.S. Liu, H.Y. Fang, Acta Metall. Sin. (Engl. Lett.) 29(12), 1161 (2016)CrossRefGoogle Scholar
  12. [12]
    B. Fu, G. Qin, F. Li, X. Meng, J. Zhang, C. Wu, J. Mater. Process. Technol. 218, 38 (2015)CrossRefGoogle Scholar
  13. [13]
    S. Ji, Z. Li, L. Zhang, Z. Zhou, P. Chai, Mater. Des. 103, 160 (2016)CrossRefGoogle Scholar
  14. [14]
    J. Mohammadi, Y. Behnamian, A. Mostafaei, H. Izadi, T. Saeid, A.H. Kokabi, A.P. Gerlich, Mater. Charact. 101, 189 (2015)CrossRefGoogle Scholar
  15. [15]
    R. Gan, Y. Jin, Sci. Technol. Weld. Join. 23, 164 (2018)CrossRefGoogle Scholar
  16. [16]
    S. Niu, S. Ji, D. Yan, X. Meng, X. Xiong, J. Mater. Process. Technol. 263, 82 (2019)CrossRefGoogle Scholar
  17. [17]
    S. Ji, S. Niu, J. Liu, X. Meng, J. Mater. Process. Technol. 267, 141 (2019)CrossRefGoogle Scholar
  18. [18]
    M. Farahani, M. Divandari, Int. J. Syst. Signal Control Eng. Appl. 9, 86 (2016)Google Scholar
  19. [19]
    S. Ji, Z. Li, Z. Zhou, B. Wu, J. Mater. Eng. Perform. 26, 5085 (2017)CrossRefGoogle Scholar
  20. [20]
    P.L. Li, Z.F. Xu, C. Yu, H. Lu, J.S. Yao, G.Y. Chen, Acta Metall. Sin. (Engl. Lett.) 25(3), 225 (2012)CrossRefGoogle Scholar
  21. [21]
    Y. Yue, Z. Li, S. Ji, Y. Huang, Z. Zhou, J. Mater. Sci. Technol. 32, 671 (2016)CrossRefGoogle Scholar
  22. [22]
    X. Dai, H. Zhang, H. Zhang, J. Liu, J. Feng, Mater. Sci. Technol. 32, 164 (2016)CrossRefGoogle Scholar
  23. [23]
    B. Chen, Y. Wang, C. Xiao, M. Zhang, G. Ni, D. Li, Mater. Sci. Technol. 34, 703 (2018)CrossRefGoogle Scholar
  24. [24]
    B.A. Saad, W.D. Mohammad, J.H. Daniel, A.W. Muhammad, M.O. Ayman, T.W. Liao, Acta Metall. Sin. (Engl. Lett.) 29(9), 869 (2016)CrossRefGoogle Scholar
  25. [25]
    S. Firouzdor, V. Kou, Weld. J. 88, 213 (2009)Google Scholar
  26. [26]
    A. Abdollahzadeh, A. Shokuhfar, J.M. Cabrera, A.P. Zhilyaev, H. Omidvar, J. Manuf. Process. 34, 18 (2018)CrossRefGoogle Scholar
  27. [27]
    F. Liu, Z. Zhang, L. Liu, Mater. Charact. 69, 84 (2012)CrossRefGoogle Scholar
  28. [28]
    Y. Zhang, Z. Luo, Y. Li, Z.M. Liu, Z.Y. Huang, Mater. Des. 75, 166 (2015)CrossRefGoogle Scholar
  29. [29]
    H.J. Liu, Y.Y. Hu, Y.X. Peng, C. Dou, Z.G. Wang, J. Mater. Process. Technol. 238, 244 (2016)CrossRefGoogle Scholar
  30. [30]
    S.T. Jose, Water Energy Int. 69, 24 (2012)Google Scholar

Copyright information

© The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Aerospace EngineeringShenyang Aerospace UniversityShenyangChina
  2. 2.Shenyang Institute of StandardizationShenyangChina

Personalised recommendations