Advertisement

Microstructure, Mechanical Properties, and Corrosion Behavior of MoNbFeCrV, MoNbFeCrTi, and MoNbFeVTi High-Entropy Alloys

  • Chao Xiang
  • Zhi-Ming Zhang
  • Hua-Meng Fu
  • En-Hou HanEmail author
  • Jian-Qiu Wang
  • Hai-Feng Zhang
  • Guo-Dong Hu
Article

Abstract

The development of high-entropy alloys (HEAs) has stimulated an ever-increasing interest from both academia and industries. In this work, three novel MoNbFeCrV, MoNbFeCrTi, and MoNbFeVTi HEAs containing low thermal neutron absorption cross section elements were prepared by vacuum arc melting. The microstructure, mechanical properties, and corrosion behaviors were investigated. A dominant body-centered cubic (BCC) phase was present in all these three HEAs. In addition, an ordered Laves phase was found to be another major phase in both MoNbFeCrV and MoNbFeCrTi alloys, whereas an ordered BCC (B2) phase was observed in the MoNbFeVTi alloy. The phase formation in these three alloys was discussed. It is found that the formation of the secondary phase in these alloys is mainly ascribed to the large atomic size difference and electronegativity difference. All the three HEAs show high hardness, high yield strength but limited plasticity. Moreover, the MoNbFeCrV, MoNbFeCrTi and MoNbFeVTi alloys exhibit excellent corrosion resistance in both deaerated 1 mol/L NaCl and 0.5 mol/L H2SO4 solutions at room temperature. However, further composition adjustment and/or thermomechanical processing is required to enhance the mechanical properties of the three alloys.

Keywords

High-entropy alloy Crystal structure Microstructure CALPHAD Mechanical property Corrosion 

Notes

Acknowledgements

This work was supported financially by the Key Program of the Chinese Academy of Sciences (No. ZDRW-CN-2017-1).

References

  1. [1]
    A. Peker, W.L. Johnson, Appl. Phys. Lett. 63, 2342 (1993)CrossRefGoogle Scholar
  2. [2]
    H.B. Lou, X.D. Wang, F. Xu, S.Q. Ding, Q.P. Cao, K. Hono, J.Z. Jiang, Appl. Phys. Lett. 99, 051910–051911 (2011)CrossRefGoogle Scholar
  3. [3]
    D. Xu, G. Duan, W.L. Johnson, Phys. Rev. Lett. 92, 245504-1 (2004)Google Scholar
  4. [4]
    P. Jia, H. Guo, Y. Li, J. Xu, E. Ma, Scr. Mater. 54, 2165 (2006)CrossRefGoogle Scholar
  5. [5]
    J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6, 299 (2004)CrossRefGoogle Scholar
  6. [6]
    S. Guo, C. Ng, C.T. Liu, J. Alloys Compd. 557, 77 (2013)CrossRefGoogle Scholar
  7. [7]
    S. Guo, C. Ng, C.T. Liu, Mater. Res. Lett. 1, 228 (2013)CrossRefGoogle Scholar
  8. [8]
    R. Li, J.C. Gao, K. Fan, Mater. Sci. Forum 686, 235 (2011)CrossRefGoogle Scholar
  9. [9]
    O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle, Intermetallics 19, 698 (2011)CrossRefGoogle Scholar
  10. [10]
    Y.D. Wu, Y.H. Cai, X.H. Chen, T. Wang, J.J. Si, L. Wang, Y.D. Wang, X.D. Hui, Mater. Des. 83, 651 (2015)CrossRefGoogle Scholar
  11. [11]
    R. Song, F. Ye, C. Yang, S. Wu, J. Mater. Sci. Technol. 34, 2014 (2018)CrossRefGoogle Scholar
  12. [12]
    Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Nature 534, 227 (2016)CrossRefGoogle Scholar
  13. [13]
    Z. Lei, X. Liu, Y. Wu, H. Wang, S. Jiang, S. Wang, X. Hui, Y. Wu, B. Gault, P. Kontis, D. Raabe, L. Gu, Q. Zhang, H. Chen, H. Wang, J. Liu, K. An, Q. Zeng, T.G. Nieh, Z. Lu, Nature 563, 546 (2018)CrossRefGoogle Scholar
  14. [14]
    Y.L. Chou, J.W. Yeh, H.C. Shih, Corros. Sci. 52, 2571 (2010)CrossRefGoogle Scholar
  15. [15]
    Y. Shi, L. Collins, R. Feng, C. Zhang, N. Balke, P.K. Liaw, B. Yang, Corros. Sci. 133, 120 (2018)CrossRefGoogle Scholar
  16. [16]
    C. Xiang, J.Z. Wang, H.M. Fu, E.H. Han, H.F. Zhang, J.Q. Wang, Z.M. Zhang, J. Chin. Soc. Corros. Prot. 36, 107 (2016)Google Scholar
  17. [17]
    A. Poulia, E. Georgatis, A. Lekatou, A.E. Karantzalis, Int. J. Refract. Met. Hard Mater. 57, 50 (2016)CrossRefGoogle Scholar
  18. [18]
    M.H. Chuang, M.H. Tsai, W.R. Wang, S.J. Lin, J.W. Yeh, Acta Mater. 59, 6308 (2011)CrossRefGoogle Scholar
  19. [19]
    Y. Yu, J. Wang, J. Li, J. Yang, H. Kou, W. Liu, J. Mater. Sci. Technol. 32, 470 (2016)CrossRefGoogle Scholar
  20. [20]
    S.Q. Xia, X. Yang, T.F. Yang, S. Liu, Y. Zhang, JOM 67, 2340 (2015)CrossRefGoogle Scholar
  21. [21]
    T. Yang, S. Xia, W. Guo, R. Hu, J.D. Poplawsky, G. Sha, Y. Fang, Z. Yan, C. Wang, C. Li, Y. Zhang, S.J. Zinkle, Y. Wang, Scr. Mater. 144, 31 (2018)CrossRefGoogle Scholar
  22. [22]
    T. Yang, C. Li, S.J. Zinkle, S. Zhao, H. Bei, Y. Zhang, J. Mater. Res. 33, 3077 (2018)CrossRefGoogle Scholar
  23. [23]
    Y. Lu, H. Huang, X. Gao, C. Ren, J. Gao, H. Zhang, S. Zheng, Q. Jin, Y. Zhao, C. Lu, T. Wang, T. Li, J. Mater. Sci. Technol. 35, 369 (2019)CrossRefGoogle Scholar
  24. [24]
    P. Li, A. Wang, C.T. Liu, J. Alloys Compd. 694, 55 (2017)CrossRefGoogle Scholar
  25. [25]
    M.S. Lucas, L. Mauger, J.A. Munoz, Y. Xiao, A.O. Sheets, S.L. Semiatin, J. Horwath, Z. Turgut, J. Appl. Phys. 109, 07E307-1 (2011)CrossRefGoogle Scholar
  26. [26]
    O.N. Senkov, C.F. Woodward, Mater. Sci. Eng. A 529, 311 (2011)CrossRefGoogle Scholar
  27. [27]
    B. Kang, J. Lee, H.J. Ryu, S.H. Hong, Mater. Sci. Eng. A 712, 616 (2017)CrossRefGoogle Scholar
  28. [28]
    O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, P.K. Liaw, Intermetallics 18, 1758 (2010)CrossRefGoogle Scholar
  29. [29]
    Z.D. Han, N. Chen, S.F. Zhao, L.W. Fan, G.N. Yang, Y. Shao, K.F. Yao, Intermetallics 84, 153 (2017)CrossRefGoogle Scholar
  30. [30]
    W. Zhang, R. Tang, Z.B. Yang, C.H. Liu, H. Chang, J.J. Yang, J.L. Liao, Y.Y. Yang, N. Liu, Surf. Coat. Technol. 347, 13 (2018)CrossRefGoogle Scholar
  31. [31]
    W. Zhang, R. Tang, Z.B. Yang, C.H. Liu, H. Chang, J.J. Yang, J.L. Liao, Y.Y. Yang, N. Liu, J. Nucl. Mater. 512, 15 (2018)CrossRefGoogle Scholar
  32. [32]
    K. Jin, H. Bei, Front. Mater. 5, 1 (2018)CrossRefGoogle Scholar
  33. [33]
    T. Nagase, S. Anada, P.D. Rack, J.H. Noh, H. Yasuda, H. Mori, T. Egami, Intermetallics 26, 122 (2012)CrossRefGoogle Scholar
  34. [34]
    L. Yang, H. Ge, J. Zhang, T. Xiong, Q. Jin, Y. Zhou, X. Shao, B. Zhang, Z. Zhu, S. Zheng, X. Ma, J. Mater. Sci. Technol. 35, 300 (2018)CrossRefGoogle Scholar
  35. [35]
    F. Granberg, K. Nordlund, M.W. Ullah, K. Jin, C. Lu, H. Bei, L.M. Wang, F. Djurabekova, W.J. Weber, Y. Zhang, Phys. Rev. Lett. 116, 135504-1 (2016)CrossRefGoogle Scholar
  36. [36]
    K.A. Terrani, S.J. Zinkle, L.L. Snead, J. Nucl. Mater. 448, 420 (2014)CrossRefGoogle Scholar
  37. [37]
    C. Xiang, E.H. Han, Z.M. Zhang, H.M. Fu, J.Q. Wang, H.F. Zhang, G.D. Hu, Intermetallics 104, 143 (2019)CrossRefGoogle Scholar
  38. [38]
    O.N. Senkov, J.D. Miller, D.B. Miracle, C. Woodward, Nat. Commun. 6, 6529 (2015)CrossRefGoogle Scholar
  39. [39]
    D.B. Miracle, O.N. Senkov, Acta Mater. 122, 448 (2017)CrossRefGoogle Scholar
  40. [40]
    Y. Zhang, X. Yang, P. Liaw, JOM 64, 830 (2012)CrossRefGoogle Scholar
  41. [41]
    H.T.T. Tsai, A. Muan, J. Am. Ceram. Soc. 75, 1412 (1992)CrossRefGoogle Scholar
  42. [42]
    E. Scheil, Z. Metallkd. 34, 70 (1942)Google Scholar
  43. [43]
    G.H. Gulliver, J. Inst. Met. 9, 120 (1913)Google Scholar
  44. [44]
    ASM, ASM Handbook, Vol. 3: Alloy Phase Diagrams, 10th edn. (ASM International, Ohio, 1992), p. 869Google Scholar
  45. [45]
    M.H. Tsai, J.H. Li, A.C. Fan, P.H. Tsai, Scr. Mater. 127, 6 (2017)CrossRefGoogle Scholar
  46. [46]
    Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Adv. Eng. Mater. 10, 534 (2008)CrossRefGoogle Scholar
  47. [47]
    S. Guo, C.T. Liu, Prog. Nat. Sci. 21, 433 (2011)CrossRefGoogle Scholar
  48. [48]
    L. Jiang, Y.P. Lu, H. Jiang, T.M. Wang, B.N. Wei, Z.Q. Cao, T.J. Li, Mater. Sci. Technol. 32, 588 (2016)Google Scholar
  49. [49]
    M.X. Ren, B.S. Li, H.Z. Fu, Trans. Nonferrous Met. Soc. China 23, 991 (2013)CrossRefGoogle Scholar
  50. [50]
    X. Yang, Y. Zhang, Mater. Chem. Phys. 132, 233 (2012)CrossRefGoogle Scholar
  51. [51]
    O.N. Senkov, S. Rao, K.J. Chaput, C. Woodward, Acta Mater. 151, 201 (2018)CrossRefGoogle Scholar
  52. [52]
    Z. Wang, Y. Huang, Y. Yang, J. Wang, C.T. Liu, Scr. Mater. 94, 28 (2015)CrossRefGoogle Scholar
  53. [53]
    A.K. Singh, N. Kumar, A. Dwivedi, A. Subramaniam, Intermetallics 53, 112 (2014)CrossRefGoogle Scholar
  54. [54]
    Y. Dong, Y. Lu, L. Jiang, T. Wang, T. Li, Intermetallics 52, 105 (2014)CrossRefGoogle Scholar
  55. [55]
    Y. Lu, Y. Dong, L. Jiang, T. Wang, T. Li, Y. Zhang, Entropy 17, 2355 (2015)CrossRefGoogle Scholar
  56. [56]
    N. Yurchenko, N. Stepanov, G. Salishchev, Mater. Sci. Technol. 33, 17 (2017)CrossRefGoogle Scholar
  57. [57]
    K. Guruvidyathri, K.C. Hari Kumar, J.W. Yeh, B.S. Murty, JOM 69, 2113 (2017)CrossRefGoogle Scholar
  58. [58]
    H.W. Yao, J.W. Qiao, J.A. Hawk, H.F. Zhou, M.W. Chen, M.C. Gao, J. Alloys Compd. 696, 1139 (2017)CrossRefGoogle Scholar
  59. [59]
    H.W. Yao, J.W. Qiao, M.C. Gao, J.A. Hawk, S.G. Ma, H.F. Zhou, Y. Zhang, Mater. Sci. Eng. A 674, 203 (2016)CrossRefGoogle Scholar
  60. [60]
    B. Zhang, Y. Mu, M.C. Gao, W.J. Meng, S.M. Guo, MRS Commun. 7, 78 (2017)CrossRefGoogle Scholar
  61. [61]
    B. Zhang, M.C. Gao, Y. Zhang, S.M. Guo, Calphad 51, 193 (2015)CrossRefGoogle Scholar
  62. [62]
    E.E. Stansbury, R.A. Buchanan, Fundamentals of Electrochemical Corrosion (ASM International, Ohio, 2000), pp. 249–250Google Scholar
  63. [63]
    Y.Y. Chen, T. Duval, U.D. Hung, J.W. Yeh, H.C. Shih, Corros. Sci. 47, 2257 (2005)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Chao Xiang
    • 1
    • 2
  • Zhi-Ming Zhang
    • 2
  • Hua-Meng Fu
    • 3
  • En-Hou Han
    • 2
    Email author
  • Jian-Qiu Wang
    • 2
  • Hai-Feng Zhang
    • 3
  • Guo-Dong Hu
    • 3
    • 4
  1. 1.Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and EngineeringNortheastern UniversityShenyangChina
  2. 2.CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal ResearchChinese Academy of SciencesShenyangChina
  3. 3.Shenyang National Laboratory for Materials Science, Institute of Metal ResearchChinese Academy of SciencesShenyangChina
  4. 4.School of Materials Science and EngineeringUniversity of Science and Technology of ChinaShenyangChina

Personalised recommendations