Advertisement

Tension–Compression Yield Asymmetry Influenced by the Variable Deformation Modes in Gradient Structure Mg Alloys

  • Jiang-Li NingEmail author
  • Bo Xu
  • Yun-Li Feng
  • Xu-Dong Li
  • Xin-Kang Li
  • Wei-Ping Tong
Article
  • 23 Downloads

Abstract

Surface mechanical attrition treatment (SMAT) was carried out on hot-rolled AZ31 Mg samples along two orthogonal directions; as a result, two types of gradient structures with different grain sizes and texture components in different layers were produced. The tension–compression yield asymmetry (YA) was studied using samples with different thicknesses, in order to elucidate the effect of combinations of variable deformation modes operating in different layers of the two oriented SMAT samples. The 0° oriented SMAT sample containing layers with strong basal texture displayed significant YA, because of either dislocation slip or extension twinning domination during tension or compression. By contrast, the 90° oriented SMAT sample containing layers with coexisting orthogonal texture components had an obviously weakened YA, which was attributed to the multi-deformation modes cooperating during tension or compression, i.e., extension twinning or detwinning in conjunction with dislocation slips, leading to close yield stresses compared between tension and compression.

Keywords

Mg alloy Gradient structure Yield asymmetry Texture Deformation mechanism 

Notes

Acknowledgements

This work was financially supported by the Defense Industrial Technology Development Program (No. JCKY2018407C008), the National Natural Science Foundation of China (NSFC) (No. 51304061) and the NCST Science Fund for Distinguished Young Scholars (No. JQ201702).

References

  1. [1]
    M.M. Avdesian, H. Baker, Magnesium and Magnesium Alloys (ASM International, Materials Park, 1999), pp. 7–165Google Scholar
  2. [2]
    B.J. Wang, D.K. Xu, S.D. Wang, E.H. Han, Front. Mech. Eng. 14, 113 (2019)CrossRefGoogle Scholar
  3. [3]
    B.J. Wang, D.K. Xu, S.D. Wang, L.Y. Sheng, R.C. Zeng, E.H. Han, Int. J. Fatigue 120, 46 (2019)CrossRefGoogle Scholar
  4. [4]
    J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuki, K. Maruyama, K. Higashi, Acta Mater. 51, 2055 (2003)CrossRefGoogle Scholar
  5. [5]
    S.R. Agnew, D.W. Brown, C.N. Tomé, Acta Mater. 18, 4841 (2006)CrossRefGoogle Scholar
  6. [6]
    H. Yu, Y. Xin, Y. Cheng, B. Guan, M. Wang, Q. Liu, Mater. Sci. Eng. A 700, 695 (2017)CrossRefGoogle Scholar
  7. [7]
    M.R. Barnett, Z. Keshavarz, A.G. Beer, D. Atwell, Acta Mater. 52, 5093 (2004)CrossRefGoogle Scholar
  8. [8]
    D.L. Yin, J.T. Wang, J.Q. Liu, X. Zhao, J. Alloys Compd. 478, 789 (2009)CrossRefGoogle Scholar
  9. [9]
    Y. Xin, X. Zhou, Q. Liu, Mater. Sci. Eng. A 567, 9 (2013)CrossRefGoogle Scholar
  10. [10]
    B.J. Wang, D.K. Xu, Y.C. Xin, L.Y. Sheng, E.H. Han, Sci. Rep. 7, 16014 (2017)CrossRefGoogle Scholar
  11. [11]
    D.K. Xu, C.Q. Li, B.J. Wang, E.H. Han, Mater. Des. 88, 88 (2015)CrossRefGoogle Scholar
  12. [12]
    J. Jain, W.J. Poole, C.W. Sinclair, M.A. Gharghouri, Scr. Mater. 62, 301 (2010)CrossRefGoogle Scholar
  13. [13]
    J.T. Wang, D.L. Yin, J.Q. Liu, J. Tao, Y.L. Su, X. Zhao, Scr. Mater. 59, 63 (2008)CrossRefGoogle Scholar
  14. [14]
    S. Xu, T. Liu, H. Chen, Z. Miao, Z. Zhang, W. Zeng, Mater. Sci. Eng. A 565, 96 (2013)CrossRefGoogle Scholar
  15. [15]
    B.J. Wang, D.K. Xu, J.H. Dong, W. Ke, Scr. Mater. 88, 5 (2014)CrossRefGoogle Scholar
  16. [16]
    H. Fang, W.L. Li, N.R. Tao, K. Lu, Science 331, 1587 (2011)CrossRefGoogle Scholar
  17. [17]
    X.L. Wu, P. Jiang, L. Chen, F.P. Yuan, Y.T. Zhu, Proc. Natl. Acad. Sci. USA 111, 7197 (2014)CrossRefGoogle Scholar
  18. [18]
    X.L. Wu, Y.T. Zhu, Mater. Res. Lett. 5, 527 (2017)CrossRefGoogle Scholar
  19. [19]
    L. Chen, F. Yuan, P. Jiang, J. Xie, X. Wu, Mater. Sci. Eng. A 694, 98 (2017)CrossRefGoogle Scholar
  20. [20]
    J.M. Xu, Y. Liu, B. Jin, J.X. Li, S.M. Zhai, X.J. Yang, J. Lu, Acta Metall. Sin. (Engl. Lett.) 28, 1162 (2015)CrossRefGoogle Scholar
  21. [21]
    H. Chen, J. Yang, H. Zhou, J. Moering, Z. Yin, Y. Gong, K. Zhao, Metall. Mater. Trans. 48, 3961 (2017)CrossRefGoogle Scholar
  22. [22]
    J. Ning, B. Xu, M. Sun, C. Zhao, Y. Feng, W. Tong, Mater. Sci. Eng. A 735, 275 (2018)CrossRefGoogle Scholar
  23. [23]
    S. Meng, H. Yu, S. Fan, Q. Li, S.H. Park, J.S. Suh, Y.M. Kim, X. Nan, M. Bian, F. Yin, W. Zhao, B.S. You, K.S. Shin, Acta Metall. Sin. (Engl. Lett.) (2019).  https://doi.org/10.1007/s40195-018-00871-2 Google Scholar
  24. [24]
    J.A. del Valle, M.T. Pérez-Prado, O.A. Ruano, Mater. Sci. Eng. A 355, 68 (2003)CrossRefGoogle Scholar
  25. [25]
    M.R. Barnett, A.G. Beer, D. Atwell, A. Oudin, Scr. Mater. 51, 19 (2004)CrossRefGoogle Scholar
  26. [26]
    W.P. Tong, N.R. Tao, Z.B. Wang, J. Lu, K. Lu, Science 299, 686 (2003)CrossRefGoogle Scholar
  27. [27]
    W.P. Tong, Z. Han, L.M. Wang, J. Lu, K. Lu, Surf. Coat. Technol. 202, 4957 (2008)CrossRefGoogle Scholar
  28. [28]
    L. Jiang, J.J. Jonas, R.K. Mishra, A.A. Luo, A.K. Sachdev, S. Godet, Acta Mater. 55, 3899 (2007)CrossRefGoogle Scholar
  29. [29]
    S.H. Park, S.G. Hong, C.S. Lee, Mater. Sci. Eng. A 570, 149 (2013)CrossRefGoogle Scholar
  30. [30]
    Y. Xin, X. Zhou, Y. Wu, H. Yu, Q. Liu, Mater. Sci. Eng. A 640, 118 (2015)CrossRefGoogle Scholar
  31. [31]
    H.Q. Sun, Y.N. Shi, M.X. Zhang, K. Lu, Acta Mater. 55, 975 (2007)CrossRefGoogle Scholar
  32. [32]
    X.Y. Shi, Y. Liu, D.J. Li, B. Chen, X.Q. Zeng, J. Lu, W.J. Ding, Mater. Sci. Eng. A 630, 146 (2015)CrossRefGoogle Scholar
  33. [33]
    Y. Wei, B. Liu, L. Hou, B. Xu, G. Liu, J. Alloys Compd. 452, 336 (2008)CrossRefGoogle Scholar
  34. [34]
    M.A. Meyers, O. Vӧhringer, V.A. Lubarda, Acta Mater. 49, 4025 (2001)CrossRefGoogle Scholar
  35. [35]
    H. Fan, S. Aubry, A. Arsenlis, J.A. El-Awady, Scr. Mater. 97, 25 (2015)CrossRefGoogle Scholar
  36. [36]
    D.K. Xu, E.H. Han, Scr. Mater. 69, 702 (2013)CrossRefGoogle Scholar
  37. [37]
    B. Song, N. Guo, T. Liu, Q. Yang, Mater. Des. 62, 352 (2014)CrossRefGoogle Scholar
  38. [38]
    S.H. Park, S.G. Hong, J.H. Lee, C.S. Lee, Mater. Sci. Eng. A 532, 401 (2012)CrossRefGoogle Scholar
  39. [39]
    W.B. Hutchinson, M.R. Barnett, Scr. Mater. 63, 737 (2010)CrossRefGoogle Scholar
  40. [40]
    G. Proust, C.N. Tomé, A. Jain, S.R. Agnew, Int. J. Plast. 25, 861 (2009)CrossRefGoogle Scholar
  41. [41]
    S.R. Agnew, M.H. Yoo, C.N. Tomé, Acta Mater. 49, 4277 (2001)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jiang-Li Ning
    • 1
    Email author
  • Bo Xu
    • 1
    • 2
  • Yun-Li Feng
    • 1
  • Xu-Dong Li
    • 1
  • Xin-Kang Li
    • 1
  • Wei-Ping Tong
    • 2
  1. 1.College of Metallurgy and EnergyNorth China University of Science and TechnologyTangshanChina
  2. 2.Key Laboratory of Electromagnetic Processing of Materials, Ministry of EducationNortheastern UniversityShenyangChina

Personalised recommendations