Advertisement

Reduction in Microsegregation in Al–Cu Alloy by Alternating Magnetic Field

  • Sheng-Ya He
  • Chuan-Jun LiEmail author
  • Tong-Jun Zhan
  • Wei-Dong Xuan
  • Jiang WangEmail author
  • Zhong-Ming Ren
Article
  • 11 Downloads

Abstract

The microsegregation behavior of the Al-4.5 wt%Cu alloy solidified at different cooling rates under the alternating magnetic field (AMF) was investigated. The experimental results showed that the amount of non-equilibrium eutectics in the interdendritic region decreased upon applying the AMF at the same cooling rate. The change in microsegregation could be explained quantificationally by the modifications of dendritic coarsening, solid-state back diffusion and convection in the AMF. The enhanced diffusivity in the solid owing to the AMF was beneficial for the improvement in microsegregation compared to the cases without an AMF. In contrast, the enhanced dendritic coarsening and forced convection in the AMF were found to aggravate the microsegregation level. Considering the contributions of the changes in above factors, an increase in solid diffusivity was found to be primarily responsible for the reduced microsegregation in the AMF. In addition, the microsegregation in the AMF was modeled using the analytical model developed by Voller. The calculated and experimental results were in reasonable agreement.

Keywords

Microsegregation Solidification Alternating magnetic field Diffusion Coarsening Convection 

Notes

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (Nos. U1560202, 51690162 and 51604171), Shanghai Municipal Science and Technology Commission Grant (No. 17JC1400602), Shanghai Pujiang Program (No. 18PJ1403700), the program of China Scholarships Council (No. 201806890052) and the National Science and Technology Major Project “Aeroengine and Gas Turbine” (No. 2017-VII-0008-0102).

References

  1. [1]
    R. Smith, Metall. Mater. Trans. B 49, 6 (2018)Google Scholar
  2. [2]
    J.T. Yue, F.W. Voltmer, J. Cryst. Growth 29, 3 (1975)Google Scholar
  3. [3]
    R.M. Kearsey, J.C. Beddoes, K.M. Jaansalu, W.T. Thompson, P. Au, in Superalloy, ed. by K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra, S. Walston (TMS, Pennsylvania, 2004), p. 801Google Scholar
  4. [4]
    L. Ling, Y. Han, W. Zhou, H. Gao, D. Shu, J. Wang, M. Kang, B. Sun, Metall. Mater. Trans. A 46, 1 (2015)Google Scholar
  5. [5]
    M. Paliwal, D.H. Kang, E. Essadiqi, I.H. Jung, Metall. Mater. Trans. A 45, 8 (2014)Google Scholar
  6. [6]
    R. Guo, C. Li, S. He, J. Wang, W. Xuan, X. Li, Y. Zhong, Z. Ren, Jpn. J. Appl. Phys. 57, 8 (2018)Google Scholar
  7. [7]
    J. Wang, Y. He, J. Li, C. Li, H. Kou, P. Zhang, E. Beaugnon, Mater. Chem. Phys. 225, 133 (2019)Google Scholar
  8. [8]
    L. Hou, Y. Dai, Y. Fautrelle, Z. Li, Z. Ren, C. Esling, X. Li, J. Alloys Compd. 758, 25 (2018)Google Scholar
  9. [9]
    Y. Hou, Z.Q. Zhang, W.D. Xuan, J. Wang, J.B. Yu, Z.M. Ren, Acta Metall. Sin. (Engl. Lett.) 31, 681 (2018)Google Scholar
  10. [10]
    Q. Wang, T. Liu, K. Wang, P. Gao, Y. Liu, J. He, ISIJ Int. 54, 3 (2014)Google Scholar
  11. [11]
    J. Wang, X. Lin, Y. Fautrelle, H. Nguyen-Thi, Z. Ren, Metall. Mater. Trans. B 49, 3 (2018)Google Scholar
  12. [12]
    C. Stelian, Y. Delannoy, Y. Fautrelle, T. Duffar, J. Cryst. Growth 266, 1 (2004)Google Scholar
  13. [13]
    C. Stelian, Y. Delannoy, Y. Fautrelle, T. Duffar, J. Cryst. Growth 275, 1 (2005)Google Scholar
  14. [14]
    D. Chen, H. Zhang, H. Jiang, J. Cui, Materialwiss. Werkstofftech. 42, 6 (2011)Google Scholar
  15. [15]
    C. Li, Y.D. Yu, Mater. Sci. Eng. A 559, 22 (2013)Google Scholar
  16. [16]
    F. Wang, L. Zhang, A. Deng, X. Xu, E. Wang, Metals 6, 1 (2015)Google Scholar
  17. [17]
    A. Roósz, E. Halder, H.E. Exner, Mater. Sci. Technol. 1, 12 (1985)Google Scholar
  18. [18]
    T. Kraft, Y.A. Chang, Metall. Mater. Trans. A 29, 9 (1998)Google Scholar
  19. [19]
    T. Himemiya, T. Umeda, ISIJ Int. 38, 7 (1998)Google Scholar
  20. [20]
    V.R. Voller, J. Cryst. Growth 226, 4 (2001)Google Scholar
  21. [21]
    A. Noeppel, A. Ciobanas, X.D. Wang, K. Zaidat, N. Mangelinck, O. Budenkova, A. Weiss, G. Zimmermann, Y. Fautrelle, Metall. Mater. Trans. B 41, 1 (2010)Google Scholar
  22. [22]
    V.R. Voller, Int. J. Heat Mass Transf. 43, 11 (2000)Google Scholar
  23. [23]
    M.N. Gungor, Metall. Trans. A 20, 11 (1989)Google Scholar
  24. [24]
    W.V. Youdelis, R.C. Dorward, Can. J. Phys. 44, 1 (1966)Google Scholar
  25. [25]
    D.H. Kirkwood, Mater. Sci. Eng. 65, 1 (1984)Google Scholar
  26. [26]
    V.R. Voller, S. Sundarraj, Mater. Sci. Technol. 9, 6 (1993)Google Scholar
  27. [27]
    T. Kraft, M. Rettenmayr, H.E. Exner, Model. Simul. Mater. Sci. Eng. 4, 2 (1996)Google Scholar
  28. [28]
    M. Basaran, Metall. Trans. A 12, 7 (1981)Google Scholar
  29. [29]
    A. Mortensen, Metall. Trans. A 20, 2 (1989)Google Scholar
  30. [30]
    D.H. Kirkwood, Mater. Sci. Eng. 73, 1 (1985)Google Scholar
  31. [31]
    Y. Aoki, S. Hayashi, H. Komatsu, J. Cryst. Growth 123, 1 (1992)Google Scholar
  32. [32]
    Z. Sun, X. Guo, M. Guo, C. Li, J. Vleugels, Z. Ren, O. Van der Biest, B. Blanpain, J. Phys. Chem. C 116, 33 (2012)Google Scholar
  33. [33]
    M.E. Glicksman, Principles of Solidification (Springer, New York, 2011), pp. 345–368Google Scholar
  34. [34]
    E.C. Kurum, H.B. Dong, J.D. Hunt, Metall. Mater. Trans. A 36, 11 (2005)Google Scholar
  35. [35]
    H.D. Brody, Dissertation, Massachusetts Institute of Technology, 1965Google Scholar
  36. [36]
    T.W. Clyne, W. Kurz, Metall. Trans. A 12, 6 (1981)Google Scholar
  37. [37]
    X. Liu, J. Cui, F. Yu, J. Mater. Sci. 39, 8 (2004)Google Scholar
  38. [38]
    X. Liu, J. Cui, Y. Guo, X. Wu, J. Zhang, Mater. Lett. 58, 9 (2004)Google Scholar
  39. [39]
    X. Liu, J. Cui, X. Wu, Y. Guo, J. Zhang, Scr. Mater. 52, 1 (2005)Google Scholar
  40. [40]
    C. Li, S. He, Y. Fan, H. Engelhardt, S. Jia, W. Xuan, X. Li, Y. Zhong, Z. Ren, Appl. Phys. Lett. 110, 7 (2017)Google Scholar
  41. [41]
    C. Li, S. He, H. Engelhardt, T. Zhan, W. Xuan, X. Li, Y. Zhong, Z. Ren, M. Rettenmayr, Sci. Rep. 7, 1 (2017)Google Scholar
  42. [42]
    M.J. Hordon, B.L. Averbach, Acta Metall. 9, 3 (1961)Google Scholar
  43. [43]
    M. Molotskii, V. Fleurov, Phys. Rev. Lett. 78, 14 (1997)Google Scholar
  44. [44]
    G.P.P. Pun, Y. Mishin, Acta Mater. 57, 18 (2009)Google Scholar
  45. [45]
    T.G. Stoebe, H.I. Dawson, Phys. Rev. 166, 3 (1968)Google Scholar
  46. [46]
    V. Galindo, G. Gerbeth, W. von Ammon, E. Tomzig, J. Virbulis, Energy Convers. Manag. 43, 3 (2002)Google Scholar
  47. [47]
    A. Mitric, T. Duffar, C.D. Guerra, V. Corregidor, L.C. Alves, C. Garnier, G. Vian, J. Cryst. Growth 287, 2 (2006)Google Scholar
  48. [48]
    A. Ghofrani, M.H. Dibaei, A.H. Sima, M.B. Shafii, Exp. Therm. Fluid. Sci. 49, 193 (2013)Google Scholar

Copyright information

© The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Advanced Special Steel and School of Materials Science and EngineeringShanghai UniversityShanghaiChina
  2. 2.Helmholtz-Zentrum Dresden-Rossendorf (HZDR)DresdenGermany

Personalised recommendations