Advertisement

Anisotropic Stress Rupture Properties of a 3rd-Generation Nickel-Based Single-Crystal Superalloy at 1100 °C/150 MPa

  • Yi-Fei Li
  • Li WangEmail author
  • Gong Zhang
  • Dong-Qing Qi
  • Kui Du
  • Lang-Hong Lou
Article
  • 5 Downloads

Abstract

The influence of orientation on the stress rupture behaviors of a 3rd-generation nickel-based single-crystal superalloy was investigated at 1100 °C/150 MPa. It is found that the stress rupture anisotropy is shown at 1100 °C, but not so obvious compared with that at intermediate temperatures. The [001] specimens display the longest rupture life, [111] specimens show the shortest rupture life, and [011] specimens exhibit the intermediate life. Detailed observations show that the final fracture is caused by crack initiation and propagation, and the anisotropy of three oriented specimens is related to the fracture modes, γ/γʹ microstructures, interfacial dislocation networks and cutting mechanisms in γʹ phase. For [001] specimens, N-type rafted structures are formed which can well hinder the slip and climb of dislocations. Besides, the regular interfacial dislocation networks can prevent dislocations from cutting into γʹ phase, leading to the improvement of the creep resistance. For [011] specimens, ± 45° rafted structures and irregular networks result in less strain hardening. For [111] specimens, a large number of crack propagation paths and inhomogeneous deformations caused by irregular rafted structures deteriorate the property and result in the shortest life. Furthermore, a[100] superdislocations with low mobility are widely formed in [001] and [011] specimens which suggests the low creep strain rate during steady creep stage, whereas superdislocations in [111] specimens possess high mobility, which indicates the high strain rate and corresponding poor stress rupture property.

Keywords

Single-crystal superalloy Stress rupture Anisotropy Microstructure Dislocation 

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51871210, 51671196, 51631008 and 51771204) and the National Key Research and Development Program of China (No. 2016YFB0701403).

References

  1. [1]
    R.C. Reed, The Superalloys: Fundaments and Applications (Cambridge University Press, Cambridge, 2006)CrossRefGoogle Scholar
  2. [2]
    G.S. Hillier, Doctoral Thesis, (Cambridge University, Cambridge, 1984)Google Scholar
  3. [3]
    T.M. Pollock, A.S. Argon, Acta Metall. Mater. 40, 1 (1992)CrossRefGoogle Scholar
  4. [4]
    H.B. Long, S.C. Mao, Y.N. Liu, Z. Zhang, X.D. Han, J. Alloys Compd. 743, 203 (2018)CrossRefGoogle Scholar
  5. [5]
    J.C. Han, Int. J. Rotating Mach. 10, 443 (2004)Google Scholar
  6. [6]
    R.A. Mackay, R.D. Maier, Metall. Trans. A 13, 1747 (1982)CrossRefGoogle Scholar
  7. [7]
    M. Segersäll, J.J. Moverare, K. Simonsson, S. Johansson, in Superalloys, ed. by E.S. Huron, R.C. Reed, M.C. Hardy, M.J. Mills, R.E. Montero, P.D. Portella, J. Telesman (TMS, Warrendale, 2012), p. 215Google Scholar
  8. [8]
    Q.Z. Chen, D.M. Knowles, Mater. Sci. Eng., A 356, 352 (2003)CrossRefGoogle Scholar
  9. [9]
    V. Sass, U. Glatzel, M. Feller-Kniepmeier, Acta Mater. 44, 1967 (1996)CrossRefGoogle Scholar
  10. [10]
    V. Sass, M. Feller-Kniepmeier, Mater. Sci. Eng., A 245, 19 (1998)CrossRefGoogle Scholar
  11. [11]
    J.L. Liu, T. Jin, X.F. Sun, J.H. Zhang, H.R. Guan, Z.Q. Hu, Mater. Sci. Eng., A 479, 277 (2008)CrossRefGoogle Scholar
  12. [12]
    T.P. Gabb, S.L. Draper, D.R. Hull, R.A. Mackay, M.V. Nathal, Mater. Sci. Eng., A 118, 59 (1989)CrossRefGoogle Scholar
  13. [13]
    R.C. Reed, N. Matan, D.C. Cox, M.A. Rist, C.M.F. Rae, Acta Mater. 47, 3367 (1999)CrossRefGoogle Scholar
  14. [14]
    A. Epishin, T. Link, U. Brückner, P.D. Portella, Acta Mater. 49, 4017 (2001)CrossRefGoogle Scholar
  15. [15]
    J.X. Zhang, T. Murakumo, H. Harada, Y. Koizumi, Scr. Mater. 48, 287 (2003)CrossRefGoogle Scholar
  16. [16]
    J.X. Zhang, J.C. Wang, H. Harada, Y. Koizumi, Acta Mater. 53, 4623 (2005)CrossRefGoogle Scholar
  17. [17]
    A. Epishin, T. Link, Philos. Mag. 84, 1979 (2004)CrossRefGoogle Scholar
  18. [18]
    J.X. Zhang, T. Murakumo, Y. Koizumi, T. Kobayashi, H. Harada, Acta Mater. 51, 5073 (2003)CrossRefGoogle Scholar
  19. [19]
    P.M. Sarosi, R. Srinivasan, G.F. Eggeler, M.V. Nathal, M.J. Mills, Acta Mater. 55, 2509 (2007)CrossRefGoogle Scholar
  20. [20]
    T. Link, A. Epishin, M. Klaus, U. Brückner, A. Reznicek, Mater. Sci. Eng., A 405, 254 (2005)CrossRefGoogle Scholar
  21. [21]
    M. Huang, L.C. Zhuo, J.C. Xiong, J.R. Li, J. Zhu, Philos. Mag. Lett. 95, 496 (2015)CrossRefGoogle Scholar
  22. [22]
    Y. Su, S.G. Tian, H.C. Yu, D.L. Shu, S. Liang, Mater. Sci. Eng., A 668, 243 (2016)CrossRefGoogle Scholar
  23. [23]
    H.C. Yu, Y. Su, N. Tian, S.G. Tian, Y. Li, X.F. Yu, L.L. Yu, Mater. Sci. Eng., A 565, 292 (2013)CrossRefGoogle Scholar
  24. [24]
    L.A. Jácome, P. Nörtershäuser, J.K. Heyer, A. Lahni, J. Frenzel, A. Dlouhy, C. Somsen, G. Eggeler, Acta Mater. 61, 2926 (2013)CrossRefGoogle Scholar
  25. [25]
    L.A. Jácome, P. Nörtershäuser, C. Somsen, A. Dlouhy, G. Eggeler, Acta Mater. 69, 246 (2014)CrossRefGoogle Scholar
  26. [26]
    G.L. Wang, J.L. Liu, J.D. Liu, T. Jin, X.F. Sun, X.D. Sun, Z.Q. Hu, J. Mater. Sci. Technol. 32, 1003 (2016)CrossRefGoogle Scholar
  27. [27]
    G. Mälzer, R.W. Hayes, T. Mack, G. Eggeler, Metall. Mater. Trans. A 38, 314 (2007)CrossRefGoogle Scholar
  28. [28]
    R.C. Reed, D.C. Cox, C.M.F. Rae, Mater. Sci. Eng., A 448, 88 (2007)CrossRefGoogle Scholar
  29. [29]
    Y.F. Li, L. Wang, G. Zhang, J. Zhang, L.H. Lou, Mater. Sci. Eng., A 760, 26 (2019)CrossRefGoogle Scholar
  30. [30]
    M. Huang, G. Zhang, D. Wang, J.S. Dong, L. Wang, L.H. Lou, Acta Metall. Sin. (Engl. Lett.) 31, 887 (2018)CrossRefGoogle Scholar
  31. [31]
    X.W. Jiang, H. Li, Foundry Technol. 33, 807 (2012)Google Scholar
  32. [32]
    L. Liu, J. Meng, J.L. Liu, H.F. Zhang, X.D. Sun, Y.Z. Zhou, Acta Metall. Sin. (Engl. Lett.) 32, 381 (2019)CrossRefGoogle Scholar
  33. [33]
    T.M. Pollock, R.D. Field, in Dislocations in Solids, ed. by F.R.N. Nabarro, M.S. Duesbery (Elsevier, Amsterdam, 2002)Google Scholar
  34. [34]
    Y. Su, S.G. Tian, H.C. Yu, L.L. Yu, Scr. Mater. 93, 24 (2014)CrossRefGoogle Scholar
  35. [35]
    E.R. Golubovskii, I.L. Svetlov, Strength Mater. 34, 109 (2002)CrossRefGoogle Scholar
  36. [36]
    R. Srinivasan, G.F. Eggeler, M.J. Mills, Acta Mater. 48, 4867 (2000)CrossRefGoogle Scholar
  37. [37]
    Y.L. Tang, M. Huang, J.C. Xiong, J.R. Li, J. Zhu, Acta Mater. 126, 336 (2017)CrossRefGoogle Scholar
  38. [38]
    F.R.N. Nabarro, H.L. De Villiers, Physics of Creep and Creep-Resistant Alloys (Taylor and Francis Ltd., London, 1995)Google Scholar
  39. [39]
    Q.Z. Yue, L. Liu, W.C. Yang, C. He, D.J. Sun, T.W. Huang, J. Zhang, H.Z. Fu, J. Mater. Sci. Technol. 35, 752 (2019)CrossRefGoogle Scholar
  40. [40]
    X.G. Wang, J.L. Liu, T. Jin, X.F. Sun, Y.Z. Zhou, Z.Q. Hu, J.H. Do, B.G. Choi, I.S. Kim, C.Y. Jo, Mater. Sci. Eng., A 626, 406 (2015)CrossRefGoogle Scholar
  41. [41]
    T. Link, C. Knobloch, U. Glatzel, Scr. Mater. 40, 85 (1999)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yi-Fei Li
    • 1
    • 2
  • Li Wang
    • 1
    Email author
  • Gong Zhang
    • 1
  • Dong-Qing Qi
    • 1
  • Kui Du
    • 1
  • Lang-Hong Lou
    • 1
  1. 1.Institute of Metal ResearchChinese Academy of SciencesShenyangChina
  2. 2.School of Materials Science and EngineeringUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations