Acta Metallurgica Sinica (English Letters)

, Volume 32, Issue 12, pp 1437–1448 | Cite as

Effects of Temperature on Fretting Corrosion Between Alloy 690TT and 405 Stainless Steel in Pure Water

  • Xing-Chen Liu
  • Hong-Liang MingEmail author
  • Zhi-Ming Zhang
  • Jian-Qiu Wang
  • Li-Chen Tang
  • Hao Qian
  • Yong-Cheng Xie
  • En-Hou Han


In pressurized water reactor, fretting corrosion has become the main reason for the failure of 690TT heat exchanger tubes. The effect of temperature on the fretting corrosion behavior between 690TT tube and 405 stainless steel (SS) bar has been studied during 106 fretting cycles. The overall average coefficient of friction (COF) values descends with an increase in test temperature, while the width of worn scar becomes wider. The severest fretting corrosion happens when the test temperature is at 100 °C. The wear mechanism differs at different test temperatures, from adhesive wear at room temperature to abrasive wear and delamination at 100 °C, to abrasive wear at 200 °C. Deformation slips, high residual strain concentration, and micro-cracks are found which are disadvantageous for the further service performance of the tubes.


Alloy 690TT 405 SS Fretting corrosion Temperature 



This work is supported by the National Natural Science Foundation of China (No. 51771211), the Large-scale advanced PWR major projects (No. 2017ZX06002006), the Liaoning Provincial Natural Science Foundation of China (No. 20180540076), and the open-ended fund of the CAS Key laboratory of Nuclear Materials and Safety Assessment (Institute of Metal Research, Chinese Academy of Sciences, China) (Nos. 2019NMSAKF02 and 2017NMSAKF04). The authors are grateful for the help of 3D surface morphology analysis from Dr. Hui Feng at IMR, CAS.


  1. [1]
    R.S. Dutta, R. Tewari, P.K. De, Corros. Sci. 49, 303 (2007)CrossRefGoogle Scholar
  2. [2]
    J. Benson, Overview of steam generator operating experience. Paper presented at the 4th international symposium on materials and reliability in nuclear power plants, Shenyang, China, 21 September 2015Google Scholar
  3. [3]
    P. Sherburne, Stress Corrosion cracking of alloy 600 &690 steam generator tubing. Paper presented at international seminar on welding and non-destructive examination in nuclear power plants, Suzhou, China, 27 June 2009Google Scholar
  4. [4]
    H.J. Connors, Nucl. Technol. 55, 311 (2017)CrossRefGoogle Scholar
  5. [5]
    M.H. Attia, Tribol. Int. 39, 1294 (2006)CrossRefGoogle Scholar
  6. [6]
    S.H. Jeong, C.W. Cho, Y.Z. Lee, Tribol. Int. 38, 283 (2005)CrossRefGoogle Scholar
  7. [7]
    J. Li, B.B. Yang, Y.H. Lu, L. Xin, Z.H. Wang, T. Shoji, Tribol. Int. 116, 147 (2017)CrossRefGoogle Scholar
  8. [8]
    J.K. Hong, I.S. Kim, C.Y. Park, E.S. Kim, Wear 259, 349 (2005)CrossRefGoogle Scholar
  9. [9]
    X. Mi, Z.B. Cai, X.M. Xiong, H. Qian, L.C. Tang, Y.C. Xie, J.F. Peng, M.H. Zhu, Tribol. Int. 100, 400 (2016)CrossRefGoogle Scholar
  10. [10]
    Z.H. Wang, Y.H. Lu, J. Li, T. Shoji, Tribol. Int. 95, 162 (2016)CrossRefGoogle Scholar
  11. [11]
    J. Li, B. Yang, Y. Lu, L. Xin, Z. Wang, T. Shoji, Mater. Charact. 131, 224 (2017)CrossRefGoogle Scholar
  12. [12]
    J. Li, Y.H. Lu, Wear 304, 223 (2013)CrossRefGoogle Scholar
  13. [13]
    L. Xin, B.B. Yang, Z.H. Wang, J. Li, Y. Lu, T. Shoji, Wear 368, 210 (2016)CrossRefGoogle Scholar
  14. [14]
    X. Guo, P. Lai, L. Tang, J. Wang, L. Zhang, Tribol. Int. 116, 155 (2017)CrossRefGoogle Scholar
  15. [15]
    L. Xin, Y.H. Lu, Y. Otsuka, Y. Mutoh, Z.H. Wang, T. Shoji, Mater. Charact. 134, 260 (2017)CrossRefGoogle Scholar
  16. [16]
    J.Y. Yun, M.C. Park, G.S. Shin, J.H. Heo, D.I. Kim, S.J. Kim, Wear 313, 83 (2014)CrossRefGoogle Scholar
  17. [17]
    L. Xin, Y. Lu, T. Shoji, Mater. Charact. 131, 157 (2017)CrossRefGoogle Scholar
  18. [18]
    H. Sun, X. Wu, E.H. Han, Corros. Sci. 51, 2840 (2012)CrossRefGoogle Scholar
  19. [19]
    I. Betova, M. Bojinov, V. Karastoyanov, P. Kinnunen, T. Saario, Corros. Sci. 58, 20 (2012)CrossRefGoogle Scholar
  20. [20]
    Z.M. Zhang, J.Q. Wang, E.H. Han, W. Ke, Corros. Sci. 53, 3623 (2011)CrossRefGoogle Scholar
  21. [21]
    J.B. Huang, X.H. Liu, E.H. Han, X.Q. Wu, Corros. Sci. 53, 3254 (2011)CrossRefGoogle Scholar
  22. [22]
    W.J. Kuang, X.Q. Wu, E.H. Han, Corros. Sci. 63, 259 (2012)CrossRefGoogle Scholar
  23. [23]
    J.Y. Yun, H.S. Lee, D.H. Hur, W.S. Kang, C.H. Bae, S.J. Kim, Wear 368, 344 (2016)CrossRefGoogle Scholar
  24. [24]
    X. Guo, P. Lai, L. Tang, J. Lu, J. Wang, L. Zhang, Wear 400–401, 119 (2018)CrossRefGoogle Scholar
  25. [25]
    S.M. Hong, I.S. Kim, Wear 259, 356 (2005)CrossRefGoogle Scholar
  26. [26]
    H.L. Ming, X.C. Liu, Z.M. Zhang, J.Q. Wang, E.H. Han, Tribol. Int. 126, 133 (2018)CrossRefGoogle Scholar
  27. [27]
    Z.R. Zhou, L. Vincent (eds.), Fretting Wear (Science Press, Beijing, 2002)Google Scholar
  28. [28]
    Q. Luo, Q.S. Wu, Q. Xu, J. Li, Phys. Exam. Test 32, 3 (2014)Google Scholar
  29. [29]
    J.Z. Wang, J.Q. Wang, H.L. Ming, Z.M. Zhang, E.H. Han, J. Mater. Sci. Technol. 34, 1419 (2018)CrossRefGoogle Scholar
  30. [30]
    P. Lai, X. Gao, L. Tang, X. Guo, L. Zhang, Nucl. Eng. Des. 327, 51 (2018)CrossRefGoogle Scholar
  31. [31]
    W.J. Kuang, X.Q. Wu, E.H. Han, J.C. Rao, Corros. Sci. 53, 3853 (2011)CrossRefGoogle Scholar
  32. [32]
    L. Xin, Z. Wang, J. Li, Y. Lu, T. Shoji, Mater. Charact. 115, 32 (2016)CrossRefGoogle Scholar
  33. [33]
    F. Huang, J.Q. Wang, E.H. Han, W. Ke, J. Mater. Sci. Technol. 28, 562 (2012)CrossRefGoogle Scholar
  34. [34]
    D. Chen, E.H. Han, X. Wu, Corros. Sci. 111, 518 (2016)CrossRefGoogle Scholar
  35. [35]
    L. Xin, B. Yang, J. Li, Y. Lu, T. Shoji, Corros. Sci. 123, 116 (2017)CrossRefGoogle Scholar
  36. [36]
    H.L. Ming, Z.M. Zhang, P.Y. Xiu, J.Q. Wang, E.H. Han, W. Ke, Acta Metall. Sin. (Engl. Lett.) 29, 848 (2016)CrossRefGoogle Scholar
  37. [37]
    X.Q. Wu, S. Xu, E.H. Han, W. Ke, Acta Metall. Sin. (Engl. Lett.) 47, 790 (2011)Google Scholar

Copyright information

© The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xing-Chen Liu
    • 1
    • 2
  • Hong-Liang Ming
    • 1
    Email author
  • Zhi-Ming Zhang
    • 1
  • Jian-Qiu Wang
    • 1
  • Li-Chen Tang
    • 3
  • Hao Qian
    • 3
  • Yong-Cheng Xie
    • 3
  • En-Hou Han
    • 1
  1. 1.CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal ResearchChinese Academy of SciencesShenyangChina
  2. 2.School of Materials Science and EngineeringUniversity of Science and Technology of ChinaShenyangChina
  3. 3.Shanghai Nuclear Engineering Research and Design Institute Ltd. Co.ShanghaiChina

Personalised recommendations