Advertisement

Acta Metallurgica Sinica (English Letters)

, Volume 32, Issue 10, pp 1281–1286 | Cite as

Atom Probe Tomography Study of Fe Segregation at Phase Interface in Zr–2.5Nb Alloy

  • Xue LiangEmail author
  • Qiang Li
  • Jiao Huang
  • Mei-Yi Yao
  • Hui Li
  • Qing-Dong Liu
Article
  • 47 Downloads

Abstract

β-Nb is a typical second phase in Zr–Nb-based alloys used as fuel claddings in water-cooled nuclear reactors. The segregation of alloying element Fe may affect the corrosion resistance of Zr–Nb-based alloys. In this work, the Fe segregation at the interface between β-Nb phase and α-Zr matrix in Zr–2.5Nb alloy was studied using atom probe tomography and focused ion beam. The results suggested that the Fe concentration was much lower than Nb concentration in α-Zr matrix, while Fe selectively segregated at the β-Nb/α-Zr phase interface, leading to a Fe concentration peak at some interfaces. The peak Fe concentration varied from 0.4 to 1.2 at.% and appeared at the position where Zr concentration was approximately equal to Nb concentration. The selective segregation of Fe should be affected by the heat treatment and structure defects induced by cold rolling.

Keywords

Zr–Nb alloy β-Nb phase Phase interface Segregation Atom probe tomography 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51171102). The authors are grateful to Prof. Wenqing Liu and Prof. Pengfei Hu in Laboratory for Microstructures of Shanghai University for their assistance in the microstructural analysis.

References

  1. [1]
    Q. Li, X. Liang, J.C. Peng, R.D. Liu, K. Yu, B.X. Zhou, Acta Metall. Sin. (in Chinese) 47, 893 (2011)Google Scholar
  2. [2]
    H.G. Kim, S.Y. Park, M.H. Lee, Y.H. Jeong, S.D. Kim, J. Nucl. Mater. 373, 429 (2008)CrossRefGoogle Scholar
  3. [3]
    Y.H. Jeong, H.G. Kim, T.H. Kim, J. Nucl. Mater. 317, 1 (2003)CrossRefGoogle Scholar
  4. [4]
    Y.H. Jeong, H.G. Kim, D.J. Kim, B.K. Choi, J.H. Kim, J. Nucl. Mater. 323, 72 (2003)CrossRefGoogle Scholar
  5. [5]
    O.T. Woo, G.M. Mcdougall, R.M. Hutcheon, V.F. Urbanic, M. Griffiths, C.E. Coleman, Corrosion of electron-irradiated Zr–2.5Nb and Zircaloy-2. Paper Presented at the Zirconium in the Nuclear Industry: Twelfth International Symposium, Toronto, Canada, 15–18 June 2000Google Scholar
  6. [6]
    F.U. Vincent, M. Griffiths, Microstructural aspects of corrosion and hydrogen ingress in Zr–2.5Nb. Paper Presented at the Zirconium in the Nuclear Industry: Twelfth International Symposium, Toronto, Canada, 15–18 June 2000Google Scholar
  7. [7]
    H.G. Kim, J.Y. Park, Y.H. Jeong, J. Nucl. Mater. 347, 140 (2005)CrossRefGoogle Scholar
  8. [8]
    G.P. Sabol, R.J. Comstock, U.P. Nayak, Effect of dilute alloy additions of molybdenum niobium and vanadium on zirconium corrosion. Paper Presented at the Zirconium in the Nuclear Industry: Twelfth International Symposium, Toronto, Canada, 15–18 June 2000Google Scholar
  9. [9]
    J. Huang, M.Y. Yao, C.Y. Gao, P.F. Hu, X. Liang, J.L. Zhang, B.X. Zhou, Q. Li, E. Ahsan, Corros. Sci. 104, 269 (2016)CrossRefGoogle Scholar
  10. [10]
    Q. Li, X. Liang, J.C. Peng, K. Yu, M.Y. Yao, B.X. Zhou, Acta Metall. Sin. (in Chinese) 47, 877 (2011)Google Scholar
  11. [11]
    G. Sundell, M. Thuvander, H.O. Andrén, Corros. Sci. 102, 490 (2016)CrossRefGoogle Scholar
  12. [12]
    G. Sundell, M. Thuvander, H.O. Andrén, J. Nucl. Mater. 456, 409 (2015)CrossRefGoogle Scholar
  13. [13]
    N. Ni, D. Hudson, J. Wei, P. Wang, S. Lozano-Perez, G.D.W. Smith, J.M. Sykes, S.S. Yardley, K.L. Moore, S. Lyon, R. Cottis, M. Preuss, C.R.M. Grovenor, Acta Mater. 60, 7132 (2012)CrossRefGoogle Scholar
  14. [14]
    G. Sundell, M. Thuvander, H.O. Andrén, Corros. Sci. 65, 10 (2012)CrossRefGoogle Scholar
  15. [15]
    M. Thuvander, H.O. Andren, Ultramicroscopy 111, 711 (2011)CrossRefGoogle Scholar
  16. [16]
    N. Nieva, D. Arias, J. Nucl. Mater. 359, 29 (2006)CrossRefGoogle Scholar
  17. [17]
    D. Charquet, R. Hahn, E. Ortlieb, J.P. Gros, J.E. Wadier, Solubility limit and formation of intermetallic precipitates in ZrSnFeCr alloys. Paper Presented at the Zirconium in the Nuclear Industry: Eighth International Symposium, San Diego, California, US, 19–23 June 1988Google Scholar
  18. [18]
    Q.D. Liu, Y.H. Chen, C.W. Li, J.F. Gu, Acta Metall. Sin. (Engl. Lett.) 31, 465 (2018)CrossRefGoogle Scholar
  19. [19]
    K. Thompson, D. Lawrence, D.J. Larson, J.D. Olson, T.F. Kelly, B. Gorman, Ultramicroscopy 107, 131 (2007)CrossRefGoogle Scholar
  20. [20]
    T.T. Tsong, Y.S. Ng, A.J. Melmed, Surf. Sci. 77, L187 (1978)CrossRefGoogle Scholar
  21. [21]
    T. Toyama, Y. Matsukawa, K. Saito, Y. Satoh, H. Abe, Y. Shinohara, Y. Nagai, Scr. Mater. 108, 156 (2015)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xue Liang
    • 1
    • 2
    Email author
  • Qiang Li
    • 1
    • 2
  • Jiao Huang
    • 3
  • Mei-Yi Yao
    • 1
    • 2
  • Hui Li
    • 1
    • 2
  • Qing-Dong Liu
    • 4
  1. 1.Institute of MaterialsShanghai UniversityShanghaiChina
  2. 2.Laboratory for MicrostructuresShanghai UniversityShanghaiChina
  3. 3.School of Materials Science and EngineeringInner Mongolia University of TechnologyHohhotChina
  4. 4.School of Nuclear Science and EngineeringShanghai Jiaotong UniversityShanghaiChina

Personalised recommendations