Acta Metallurgica Sinica (English Letters)

, Volume 32, Issue 12, pp 1511–1520 | Cite as

Site Occupation of Nb in γ-TiAl: Beyond the Point Defect Gas Approximation

  • Wei Diao
  • Li-Hua Ye
  • Zong-Wei Ji
  • Rui Yang
  • Qing-Miao HuEmail author


Microalloying is an effective approach to improve the mechanical properties of γ-TiAl intermetallic compound. Knowledge about the site occupancy of the ternary alloying element in the crystal lattice of γ-TiAl is highly demanded in order to understand the physics underlying the alloying effect. Previous first-principle methods-based thermodynamic models for the determination of the site occupancy were based on the point defect gas approximation with the interaction between the point defects neglected. In the present work, we include the point defect interaction energy in the thermodynamic model, which allows us to predict the site occupancy of the ternary alloying element in γ-TiAl beyond the point defect gas approximation. The model is applied to the γ-TiAl–Nb alloy. We show that, at low temperature, the site occupancy of Nb atoms depends on the composition of the alloy: Nb atoms occupy the Al sublattice for the Ti-rich alloy but occupy Ti sublattice for the Al-rich alloy. The fraction of Nb atoms occupying Al sublattice in the Ti-rich alloy decreases drastically, whereas the fraction of Nb atoms on the Ti sublattice in the Al-rich alloy decreases slightly with increasing temperature. At high temperature, Nb atoms occupy dominantly the Ti sublattice for both the Ti-rich and Al-rich alloys. The interaction between the point defects makes the Ti sublattice more favorable for the Nb atoms to occupy.


Site preference Titanium aluminides Special quasi-random structures First principles method 



The authors are grateful for the financial supports from the National Key Research and Development Program of China under Grant No. 2016YFB0701301 and the National Natural Science Foundation of China under Grant No. 91860107.


  1. [1]
    E.S. Bumps, H.D. Kessler, M. Hansen, JOM 4, 609 (1952)Google Scholar
  2. [2]
    S.A. David, S.C. Deevi, Sci. Technol. Weld. Join. 22, 681 (2017)Google Scholar
  3. [3]
    Y.W. Kim, JOM 41, 24 (1989)Google Scholar
  4. [4]
    S.C. Huang, E.L. Hall, Acta Metall. Mater. 39, 1053 (1991)Google Scholar
  5. [5]
    S.C. Huang, E.L. Hall, Mater. Res. Soc. Symp. Proc. 133, 373 (1988)Google Scholar
  6. [6]
    T. Tsujimoto, K. Hashimoto, Mater. Res. Soc. Symp. Proc. 133, 391 (1988)Google Scholar
  7. [7]
    T. Kawabata, H. Fukai, O. Izumi, Acta Mater. 46, 2185 (1998)Google Scholar
  8. [8]
    S. Liu, C. Tang, Y. Zhan, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 47A, 1451 (2016)Google Scholar
  9. [9]
    Y. Xia, D. Qiu, M. Qian, Intermetallics 71, 65 (2016)Google Scholar
  10. [10]
    M. Li, S. Xiao, Y. Chen, L. Xu, J. Tian, J. Alloys Compd. 775, 441 (2019)Google Scholar
  11. [11]
    A. Chlupova, T. Kruml, P. Roupcova, M. Heczko, K. Obrtlik, P. Beran, T. Ltd, The Effect of Mo and/or C Addition on Microstructure and Properties of TiAl Alloys, Paper presented at the 24th International Conference on Metallurgy and Materials, Brno, Czech Republic, 03–05 June 2015Google Scholar
  12. [12]
    Q. Wang, H. Ding, H. Zhang, R. Chen, J. Guo, H. Fu, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 700, 198 (2017)Google Scholar
  13. [13]
    A. Couret, T. Voisin, M. Thomas, J.P. Monchoux, JOM 69, 2576 (2017)Google Scholar
  14. [14]
    S.Q. Tang, S.J. Qu, A.H. Feng, C. Feng, J. Shen, D.L. Chen, Sci. Rep. 7, 3483 (2017)Google Scholar
  15. [15]
    M. Kastenhuber, T. Klein, H. Clemens, S. Mayer, Intermetallics 97, 27 (2018)Google Scholar
  16. [16]
    C. Zhou, F.P. Zeng, B. Liu, Y. Liu, K. Zhao, J. Lu, C. Qiu, J. Li, Y. He, Mater. Trans. 57, 461 (2016)Google Scholar
  17. [17]
    M. Morinaga, J. Saito, N. Yukawa, H. Adachi, Acta Metall. Mater. 38, 25 (1990)Google Scholar
  18. [18]
    Y. Liu, K.Y. Chen, J.H. Zhang, Z.Q. Hu, G. Lu, N. Kioussis, J. Phys. Condens. Matter 9, 9829 (1997)Google Scholar
  19. [19]
    S.R. Chubb, D.A. Papaconstantopoulos, B.M. Klein, Phys. Rev. B 38, 12120 (1988)Google Scholar
  20. [20]
    T. Kawabata, T. Tamura, O. Izumi, Metall. Mater. Trans. A 24, 141 (1993)Google Scholar
  21. [21]
    K. Hashimoto, H. Doi, K. Kasahara, T. Tsujimoto, T. Suzuki, J. Jpn. Inst. Met. 52, 816 (1988)Google Scholar
  22. [22]
    J. Coletti, V. Suresh Babu, A.S. Pavlovic, M.S. Seehra, Phys. Rev. B 42, 10754 (1990)Google Scholar
  23. [23]
    A.V. Kartavykh, E.A. Asnis, N.V. Piskun, I.I. Statkevich, M.V. Gorshenkov, A.V. Korotitskiy, Mater. Lett. 188, 88 (2017)Google Scholar
  24. [24]
    T. Maeda, M. Okada, Y. Shida, Mater. Res. Soc. Symp. Proc. 213, 555 (1990)Google Scholar
  25. [25]
    Y. Zheng, L. Zhao, K. Tangri, Scr. Mater. 26, 219 (1992)Google Scholar
  26. [26]
    J.D. Shi, Z. Pu, Z. Zhong, D. Zou, Scr. Mater. 27, 1331 (1992)Google Scholar
  27. [27]
    Q.M. Hu, L. Vitos, R. Yang, Phys. Rev. B 90, 054109 (2014)Google Scholar
  28. [28]
    D.G. Konitzer, I.P. Jones, H.L. Fraser, Scr. Mater. 20, 265 (1986)Google Scholar
  29. [29]
    E. Mohandas, P.A. Beaven, Scr. Mater. 25, 2023 (1991)Google Scholar
  30. [30]
    Y.L. Hao, D.S. Xu, Y.Y. Cui, R. Yang, D. Li, Acta Mater. 47, 1129 (1999)Google Scholar
  31. [31]
    C.J. Rossouw, C.T. Forwood, M.A. Gibson, P.R. Miller, Philos. Mag. A 74, 77 (1996)Google Scholar
  32. [32]
    H. Doi, K. Hashimoto, K. Kasahara, T. Tsujimoto, Mater. Trans. JIM 31, 975 (1990)Google Scholar
  33. [33]
    K. Hashimoto, H. Doi, T. Tsujimoto, T. Suzuki, Mater. Trans. JIM 32, 574 (1991)Google Scholar
  34. [34]
    T. Al-Kassab, Y. Yuan, C. Kluthe, T. Boll, Z.G. Liu, Surf. Interface Anal. 39, 257 (2007)Google Scholar
  35. [35]
    J. Wesemann, Z.G. Liu, G. Frommeyer, M. Kreuss, Phys. Status Solidi A-Appl. Mater. 148, K61 (1995)Google Scholar
  36. [36]
    D. Xu, Y. Song, D. Li, Z. Hu, Acta Metall. Sin. (Engl. Lett.) 8, 609 (1995)Google Scholar
  37. [37]
    H. Erschbaumer, R. Podloucky, P. Rogl, G. Temnitschka, R. Wagner, Intermetallics 1, 99 (1993)Google Scholar
  38. [38]
    W. Wolf, R. Podloucky, P. Rogl, H. Erschbaumer, Intermetallics 4, 201 (1996)Google Scholar
  39. [39]
    S.M. Foiles, M.S. Daw, J. Mater. Res. 2, 5 (1987)Google Scholar
  40. [40]
    R.A. Johnson, J.R. Brown, J. Mater. Res. 7, 3213 (1992)Google Scholar
  41. [41]
    C.L. Fu, Y. Ye, M.H. Yoo, K.M. Ho, Phys. Rev. B 48, 6712 (1993)Google Scholar
  42. [42]
    J. Mayer, C. Elsässer, M. Fähnle, Phys. Status Solidi B Basic Solid State Phys. 191, 283 (1995)Google Scholar
  43. [43]
    Q.M. Hu, R. Yang, Y.L. Hao, D.S. Xu, D. Li, Phys. Rev. Lett. 92, 185505 (2004)Google Scholar
  44. [44]
    C. Woodward, S. Kajihara, L.H. Yang, Phys. Rev. B 57, 13459 (1998)Google Scholar
  45. [45]
    C. Jiang, Acta Mater. 56, 6224 (2008)Google Scholar
  46. [46]
    G. Wu, Z.H. Zheng, B. Wu, Q. Li, Chin. J. Rare Met. 35, 644 (2011)Google Scholar
  47. [47]
    P.A. Rock, Chemical Thermodynamics: Principles and Applications (Macmillan, London, 1969)Google Scholar
  48. [48]
    A. Zunger, S.H. Wei, L.G. Ferreira, J.E. Bernard, Phys. Rev. Lett. 65, 353 (1990)Google Scholar
  49. [49]
    S.H. Wei, L.G. Ferreira, J.E. Bernard, A. Zunger, Phys. Rev. B 42, 9622 (1990)Google Scholar
  50. [50]
    A.V.D. Walle, P. Tiwary, M.D. Jong, D.L. Olmsted, M. Asta, A. Dick, D. Shin, Y. Wang, L.Q. Chen, Z.K. Liu, Calphad-Comput. Coupling Phys. Diagr. Thermochem. 42, 13 (2013)Google Scholar
  51. [51]
    A. van de Walle, M. Asta, G. Ceder, Calphad-Comput. Coupling Phys. Diagr. Thermochem. 26, 539 (2002)Google Scholar
  52. [52]
    W. Kohn, L.J. Sham, Phys. Rev. B 140, A1133 (1965)Google Scholar
  53. [53]
    G. Kresse, J. Furthmuller, Phys. Rev. B 54, 11169 (1996)Google Scholar
  54. [54]
    G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996)Google Scholar
  55. [55]
    P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)Google Scholar
  56. [56]
    G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)Google Scholar
  57. [57]
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)Google Scholar
  58. [58]
    H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)Google Scholar
  59. [59]
    P.Y. Tang, B.Y. Tang, X.P. Su, Comput. Mater. Sci. 50, 1467 (2011)Google Scholar
  60. [60]
    P.S. Ghosh, A. Arya, U.D. Kulkarni, G.K. Dey, S. Hata, T. Nakano, K. Hagihara, H. Nakashima, Philos. Mag. 94, 1202 (2014)Google Scholar
  61. [61]
    G. Ghosh, M. Asta, Acta Mater. 53, 3225 (2005)Google Scholar
  62. [62]
    J. Zou, C.L. Fu, Phys. Rev. B 51, 2115 (1995)Google Scholar
  63. [63]
    M. Asta, D. de Fontaine, M. van Schilfgaarde, J. Mater. Res. 8, 2554 (1993)Google Scholar
  64. [64]
    R. Yu, L.L. He, H.Q. Ye, Phys. Rev. B 65, 184102 (2002)Google Scholar
  65. [65]
    H. Fu, Z. Zhao, W. Liu, F. Peng, T. Gao, X. Cheng, Intermetallics 18, 761 (2010)Google Scholar
  66. [66]
    D. Music, J.M. Schneider, Phys. Rev. B 74, 174110 (2006)Google Scholar
  67. [67]
    S.L. Shu, C.Z. Tong, F. Qiu, Q. Zou, Q.C. Jiang, Can. Metall. Q. 55, 156 (2016)Google Scholar
  68. [68]
    P. Duwez, J.L. Taylor, JOM 4, 70 (1952)Google Scholar
  69. [69]
    S. Sridharan, H. Nowotny, S.F. Wayne, Mon. Chem. 114, 127 (1983)Google Scholar
  70. [70]
    Y. He, R.B. Schwarz, A. Migliori, S.H. Whang, Int. J. Mater. Res. 10, 1187 (1995)Google Scholar
  71. [71]
    K. Tanaka, Philos. Mag. Lett. 73, 71 (1996)Google Scholar

Copyright information

© The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Wei Diao
    • 1
    • 2
  • Li-Hua Ye
    • 1
  • Zong-Wei Ji
    • 1
    • 3
  • Rui Yang
    • 1
  • Qing-Miao Hu
    • 1
    Email author
  1. 1.Institute of Metal ResearchChinese Academy of SciencesShenyangChina
  2. 2.School of Materials Science and EngineeringUniversity of Science and Technology of ChinaHefeiChina
  3. 3.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations