Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Formation and Structural Evolution of Fe72.5B15.6Si7.8Nb1.7Zr1.7Cu0.7 Nanocrystalline Alloy

  • 53 Accesses

Abstract

A 2.5-mm Fe72.5B15.6Si7.8Nb1.7Zr1.7Cu0.7 glassy rod was successfully fabricated using copper mold casting. The introduction of Cu resulted in the formation of large quantities of α-Fe nanoparticles embedded in the glassy matrix after isothermal annealing. The Fe72.5B15.6Si7.8Nb1.7Zr1.7Cu0.7 nanocrystalline alloy exhibited high saturation magnetization (~ 1.26 T) and a low coercive force (~ 0.8 A/m) after annealing at 833 K for 15 min due to the precipitation of ~ 15-nm-sized α-Fe nanoparticles in the glassy matrix. The structural evolution of the FeBSiNbZrCu amorphous alloy during the annealing process was discussed using a dual-cluster model.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. [1]

    Y. Yoshizawa, S. Oguma, K. Yamauchi, J. Appl. Phys. 64, 6044 (1988)

  2. [2]

    K. Suzuki, A. Makino, A. Inoue, T. Masumoto, J. Appl. Phys. 74, 3316 (1993)

  3. [3]

    M.A. Willard, M.Q. Haung, D.E. Laughlin, M.E. Mchenry, J.O. Cross, V.G. Harris, C. Franchetti, J. Appl. Phys. 85, 4421 (1999)

  4. [4]

    A. Makino, H. Men, K. Yubuta, K. Yubuta, A. Inoue, J. Appl. Phys. 105, 07A308 (2009)

  5. [5]

    M.J. Shi, R. Li, J.F. Wang, Z.Q. Liu, X.K. Luo, T. Zhang, Philos. Mag. 93, 2182 (2013)

  6. [6]

    G. Herzer, Acta Mater. 61, 718 (2013)

  7. [7]

    Y.H. Li, X.J. Jia, Y.Q. Xu, C.T. Chang, G.Q. Xie, W. Zhang, J. Alloys Compd. 722, 859 (2017)

  8. [8]

    A. Inoue, B.L. Shen, J. Mater. Res. 18, 2799 (2003)

  9. [9]

    T.S. Chin, C.Y. Lin, M.C. Lee, R.T. Huang, S.M. Huang, Intermetallics 16, 52 (2008)

  10. [10]

    A. Urata, H. Matsumoto, S. Sato, A. Makino, J. Appl. Phys. 105, 07A324 (2009)

  11. [11]

    X. Li, H. Kato, K. Yubuta, A. Makino, A. Inoue, Mater. Sci. Eng. A 527, 2598 (2010)

  12. [12]

    J.E. Gao, H.X. Li, Z.B. Jiao, Y. Wu, Y.H. Chen, T. Yu, Z.P. Lu, Appl. Phys. Lett. 99, 052504 (2011)

  13. [13]

    Z.Z. Li, A.D. Wang, C.T. Chang, Y.G. Wang, B.S. Dong, S.X. Zhou, Intermetallics 54, 225 (2014)

  14. [14]

    Z.Z. Li, S.X. Zhou, G.Q. Zhang, C.L. Zhao, L. Xue, R. Xiang, Prog. Nat. Sci. Mater. Interfaces 25, 263 (2015)

  15. [15]

    T.H. Noh, M.B. Lee, H.J. Kim, I.K. Kang, J. Appl. Phys. 67, 5568 (1990)

  16. [16]

    K. Hono, D.H. Ping, M. Ohnuma, H. Onodera, Acta Mater. 47, 997 (1999)

  17. [17]

    M.E. Mchenry, M.A. Willard, D.E. Laughlin, Prog. Mater. Sci. 44, 291 (1999)

  18. [18]

    M. Ohta, Y. Yoshizawa, Appl. Phys. Exp. 2, 023005 (2013)

  19. [19]

    Y. Wu, H.X. Li, J.E. Gao, H. Wang, X.J. Liu, M.K. Miller, H. Bei, Y.F. Gao, Z.P. Lu, J. Alloys Compd. 688, 822 (2016)

  20. [20]

    S. Jafari, A. Beitollahi, B.E. Yekta, T. Ohkubo, V. Budinsky, M. Marsilius, G. Herzer, K. Hono, J. Alloys Compd. 674, 136 (2016)

  21. [21]

    Y.X. Geng, Y.M. Wang, J.B. Qiang, C. Dong, H.B. Wang, O. Tegus, Acta Metall. Sin. 52, 1459 (2016)

  22. [22]

    Y.X. Geng, Y.M. Wang, J.B. Qiang, G.F. Zhang, C. Dong, O. Tegus, Intermetallics 67, 138 (2015)

  23. [23]

    Y.X. Geng, Y.M. Wang, Z.R. Wang, J.B. Qiang, H.B. Wang, C. Dong, O. Tegus, Mater. Des. 106, 69 (2016)

  24. [24]

    Y.X. Geng, K.M. Han, Y.M. Wang, J.B. Qiang, C. Dong, G.F. Zhang, O. Tegus, P. Häussler, Acta Metall. Sin. 51, 1017 (2015)

  25. [25]

    Y.X. Geng, Y.M. Wang, J.B. Qiang, G.F. Zhang, C. Dong, P. Häussler, J. Non-Cryst. Solids 432, 453 (2016)

  26. [26]

    Y.X. Geng, Z.J. Zhang, Z.R. Wang, Y.M. Wang, J.B. Qiang, C. Dong, H.B. Wang, O. Tegus, J. Non-Cryst. Solids 450, 1 (2016)

  27. [27]

    Y.X. Geng, X. Lin, J.B. Qiang, Y.M. Wang, C. Dong, Acta Metall. Sin. 53, 833 (2017)

  28. [28]

    S.S. Shin, H.K. Kim, J.C. Lee, I.M. Park, Acta Metall. Sin. (Engl. Lett.) 31, 273 (2018)

  29. [29]

    Z.Q. Zhang, P. Sharma, A. Makino, J. Appl. Phys. 112, 103902 (2012)

  30. [30]

    G. Herzer, J. Magn. Magn. Mater. 294, 99 (2005)

  31. [31]

    A. Takeuchi, A. Inoue, Mater. Trans. 46, 2817 (2005)

  32. [32]

    P.B. Chen, T. Liu, F.Y. Kong, A.D. Wang, C.Y. Yu, G. Wang, C.T. Chang, X.M. Wang, J. Mater. Sci. Technol. 34, 793 (2018)

  33. [33]

    Y.P. Ma, D.D. Dong, C. Dong, L.J. Luo, Q. Wang, J.B. Qiang, Y.M. Wang, Sci. Rep. 5, 17880 (2015)

  34. [34]

    G.J. Naz, D.D. Dong, Y.X. Geng, Y.M. Wang, C. Dong, Sci. Rep. 7, 9150 (2017)

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (No. 2016YFB1100103), the National Natural Science Foundation of China (No. 51801079), the Natural Science Foundation for Young Scientists of Jiangsu, China (Nos. BK20180985 and BK20180987), and the Natural Science Foundation in Higher Education of Jiangsu, China (No. 18KJB430011).

Author information

Correspondence to Yao-Xiang Geng.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Geng, Y., Ding, H., Wang, D. et al. Formation and Structural Evolution of Fe72.5B15.6Si7.8Nb1.7Zr1.7Cu0.7 Nanocrystalline Alloy. Acta Metall. Sin. (Engl. Lett.) 33, 313–318 (2020). https://doi.org/10.1007/s40195-019-00924-0

Download citation

Keywords

  • Nanocrystalline alloy
  • Magnetic property
  • Dual-cluster model
  • Structural evolution