Advertisement

Acta Metallurgica Sinica (English Letters)

, Volume 32, Issue 12, pp 1459–1469 | Cite as

Effect of Cl Concentration on the SCC Behavior of 13Cr Stainless Steel in High-Pressure CO2 Environment

  • Jin-Jin Zhao
  • Xian-Bin LiuEmail author
  • Shuai Hu
  • En-Hou Han
Article
  • 25 Downloads

Abstract

An effect of Cl concentration on the stress corrosion cracking (SCC) behavior of 13Cr stainless steel was investigated by employing electrochemical measurements and the slow strain rate tensile tests. These tests were conducted in various solutions with different concentrations of NaCl at 90 °C under 3 MPa CO2 with 3 MPa N2. The results indicate that the passive film of the specimen formed in the 10% NaCl solution has the best protective effect on the matrix. The SCC susceptibility does not increase with increasing the chloride ion concentration, the lowest SCC susceptibility occurs when the NaCl concentration is 10%, and the specimens show higher SCC susceptibility in the 5% NaCl and 20% NaCl solutions.

Keywords

13Cr Cl Stress corrosion cracking CO2 environment 

Notes

Acknowledgements

This study was supported by National Natural Science Foundation of China (Grant Number: 51501199). The authors acknowledge the assistance.

References

  1. [1]
    Z. Zhi, H. Wang, J. Nat. Gas Sci. Eng. 692, 31 (2016)Google Scholar
  2. [2]
    L.W. Wang, L.J. Cheng, J.R. Li, Z.F. Zhu, S.W. Bai, Z.Y. Cui, Materials 465, 11 (2018)Google Scholar
  3. [3]
    X.Q. Yue, M.F. Zhao, L. Zhang, H.J. Zhang, D.P. Li, M.X. Lu, RSC Adv. 24679, 8 (2018)Google Scholar
  4. [4]
    S.D. Zhu, J.F. Wei, R. Cai, Z.Q. Bai, G.S. Zhou, Eng. Failure Anal. 2222, 18 (2011)Google Scholar
  5. [5]
    H. Wu, C. Li, K. Fan, W. Zhang, F. Xue, G. Zhang, X. Wang, Mater. Corros. (2018).  https://doi.org/10.1002/maco.201810201 CrossRefGoogle Scholar
  6. [6]
    D. Bauernfeind, G. Mori, Proceeding to the NACE International on Corrosion 2003, Houston, Texas, U.S., Paper No. 03257 (2003)Google Scholar
  7. [7]
    Z. Wang, J. Wang, E. Han, W. Ke, Mater. Corros. 583, 58 (2007)Google Scholar
  8. [8]
    D.T. Hoelzer, B.A. Pint, I.G. Wright, J. Nucl. Mater. 1306, 283 (2000)Google Scholar
  9. [9]
    R.B. Rebak, T.E. Perez, Proceeding to the NACE International on Corrosion 2017, Houston, Texas, U.S., Paper No. 8933 (2017)Google Scholar
  10. [10]
    Z.G. Liu, X.H. Gao, C. Yu, L.X. Du, J.P. Li, P.J. Hao, Acta Metall. Sin. (Engl. Lett.) 739, 28 (2015)Google Scholar
  11. [11]
    K. Denpo, H. Ogawa, Corrosion 442, 49 (1993)Google Scholar
  12. [12]
    H. Asahi, M. Ueno, T. Yonezawa, Corrosion 537, 50 (1994)Google Scholar
  13. [13]
    J. Konys, S. Fodi, J. Hausselt, H. Schmidt, V. Casal, Corrosion 45, 55 (1999)Google Scholar
  14. [14]
    C. Dewaard, D.E. Milliams, Corrosion 131, 31 (1975)Google Scholar
  15. [15]
    K. Videm, A. Dugstad, Mater. Perform. 46, 4 (1989)Google Scholar
  16. [16]
    C. Dewaard, U. Lotz, D.E. Milliams, Corrosion 976, 47 (1991)Google Scholar
  17. [17]
    S. Nesic, J. Postlethwaite, S. Olsen, Corrosion 280, 52 (1996)Google Scholar
  18. [18]
    Q.Y. Liu, L.J. Mao, S.W. Zhou, Corros. Sci. 165, 84 (2014)Google Scholar
  19. [19]
    M.H. Ezuber, Mater. Des. 3420, 30 (2009)Google Scholar
  20. [20]
    R.H. Hausler, Advances in CO 2Corrosion, vol. 1 (NACE, Houston, 1984), pp. 72–86Google Scholar
  21. [21]
    G. Schmitt, Advances in CO 2Corrosion, vol. 1 (NACE, Houston, 1984), pp. 1–6Google Scholar
  22. [22]
    G. Svenningsen, B.H. Morland, A. Dugstad, B. Thomas, Energy Procedia 6778, 114 (2017)Google Scholar
  23. [23]
    Q. Yu, C.F. Dong, J.X. Liang, Z.B. Liu, K. Xiao, X.G. Li, J. Iron. Steel Res. Int. 282, 24 (2017)Google Scholar
  24. [24]
    G.X. Zhao, M. Zheng, X.H. Lv, X.H. Dong, H.L. Li, Met. Mater. Int. 135, 11 (2005)Google Scholar
  25. [25]
    R.K.S. Raman, R. Rihan, R.N. Ibrahim, J. Electrochem. Soc. 154, C658–C662 (2007)CrossRefGoogle Scholar
  26. [26]
    V. Vignal, C. Valot, R. Oltra, M. Verneau, Corros. Sci. 1477, 44 (2002)Google Scholar
  27. [27]
    A.M.P. Simoes, M.G.S. Ferreira, B. Rondot, J. Electrochem. Soc. 82, 137 (1990)Google Scholar
  28. [28]
    D.D. Macdonald, J. Electrochem. Soc. 3434, 139 (1992)Google Scholar
  29. [29]
    G.A. Zhang, Y.F. Cheng, Corros. Sci. 960, 52 (2010)Google Scholar
  30. [30]
    M. Nakahara, T. Shoji, Corrosion 634, 52 (1996)Google Scholar
  31. [31]
    B.S. Kumara, V. Kaina, M. Singhd, B. Vishwanadh, Mater. Sci. Eng. A 140, 700 (2017)Google Scholar
  32. [32]
    E.N. Zhou, Z.H. Yu, J.K. Qu, T. Qi, X.Y. Han, G.Q. Zhang, Acta Phys. Chim. Sin. 2567, 28 (2012)Google Scholar
  33. [33]
    R. Lange, H. Staaland, A. Mostad, J. Exp. Mar. Biol. Ecol. 217, 9 (1972)Google Scholar
  34. [34]
    G.A. Zhang, Y.F. Cheng, Corros. Sci. 87, 51 (2009)Google Scholar
  35. [35]
    M. Nordsveen, S. Nesic, R. Nyborg, A. Stangeland, Corrosion 443, 59 (2003)Google Scholar
  36. [36]
    M. Shayegani, A. Afshar, M. Ghorbani, M. Rahmaniyan, Corros. Eng. Sci. Technol. 290, 43 (2008)Google Scholar
  37. [37]
    Y. Garsany, D. Pletcher, B. Hedges, J. Electroanal. Chem. 538, 285 (2002)CrossRefGoogle Scholar
  38. [38]
    J.K. Heuer, J.F. Stubbins, Corros. Sci. 1231, 41 (1999)Google Scholar
  39. [39]
    S. Nesic, M. Nordsveen, R. Nyborg, A. Stangeland, Corrosion/2001, Paper No. 01040, Nace, Houston (2001)Google Scholar
  40. [40]
    Q. Yang, L.J. Qiao, S. Chiovelli, J. Electroanal. Soc. 148, B29–B35 (2001)CrossRefGoogle Scholar
  41. [41]
    J. Han, J.W. Carey, J. Zhang, J. Appl. Electrochem. 741, 41 (2011)Google Scholar

Copyright information

© The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jin-Jin Zhao
    • 1
    • 2
  • Xian-Bin Liu
    • 1
    Email author
  • Shuai Hu
    • 1
    • 2
  • En-Hou Han
    • 1
  1. 1.National Engineering Center for Corrosion Control, Institute of Metal ResearchChinese Academy of SciencesShenyangChina
  2. 2.School of Materials Science and EngineeringUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations