Acta Metallurgica Sinica (English Letters)

, Volume 32, Issue 12, pp 1549–1564 | Cite as

Effect of Cooling Rate on Microstructure and Mechanical Properties of Sand-Casted Al–5.0Mg–0.6Mn–0.25Ce Alloy

  • Hua-Ping Tang
  • Qu-Dong WangEmail author
  • Chuan Lei
  • Kui Wang
  • Bing Ye
  • Hai-Yan Jiang
  • Wen-Jiang Ding


This study examines the relationship among cooling rate, microstructure and mechanical properties of a sand-casted Al–5.0Mg–0.6Mn–0.25Ce (wt%) alloy subjected to T4 heat treatment (430 °C × 12 h + natural aging for 5 days), and the tested alloys with wall thickness varying from 5 to 50 mm were prepared. The results show that as the cooling rate increases from 0.22 to 7.65 K/s, the average secondary dendritic arm spacing (SDAS, λ2) decreases from 94.8 to 27.3 μm. The relation between SDAS and cooling rate can be expressed by an equation: \(\lambda_{2} = 53.0R_{\text{c}}^{ - 0.345}\). Additionally, an increase in cooling rate was shown not only to reduce the amount of the secondary phases, but also to promote the transition from Al10Mn2Ce to α-Al24(Mn,Fe)6Si2 phase. Tensile tests show that as the cooling rate increases from 0.22 to 7.65 K/s, the ultimate tensile strength (UTS) increases from 146.3 to 241.0 MPa and the elongation (EL) increases sharply from 4.4 to 12.2% for the as-cast alloys. Relations of UTS and EL with SDAS were determined, and both the UTS and EL increase linearly with (1/λ2)0.5 and that these changes can be explained by strengthening mechanisms. Most eutectic Al3Mg2 phases were dissolved during T4 treatment, which in turn further improve the YS, UTS and EL. However, the increment percent of YS, UTS and EL is affected by the cooling rate.


Al–Mg–Mn cast alloys Cooling rate Microstructure Al10Mn2Ce Mechanical properties 



This work was supported financially by the National Natural Science Foundation of China (No. 51674166). Also, many thanks are given to Colin Luo for his editing work in English, who is from University of Calgary in Canada.


  1. [1]
    R.A. Sielski, Ships Offshore Struct. 3, 57 (2008)CrossRefGoogle Scholar
  2. [2]
    S.W. Lee, J.W. Yeh, Mater. Sci. Eng. A 460, 409 (2007)CrossRefGoogle Scholar
  3. [3]
    Q. Wu, S.B. Kang, Acta Mater. Sin. (Engl. Lett.) 12, 521 (1999)Google Scholar
  4. [4]
    S. Seifeddine, S. Johansson, I.L. Svensson, Mater. Sci. Eng. A 490, 385 (2008)CrossRefGoogle Scholar
  5. [5]
    T. Radetić, M. Popović, E. Romhanji, Mater. Charact. 65, 16 (2012)CrossRefGoogle Scholar
  6. [6]
    M. Król, T. Tański, P. Snopiński, B. Tomiczek, J. Therm. Anal. Calorim. 127, 299 (2017)CrossRefGoogle Scholar
  7. [7]
    Y.L. Liu, G.R. Huang, Y.M. Sun, L. Zhang, Z.W. Huang, J.J. Wang, C.Z. Liu, Materials 9, 88 (2016)CrossRefGoogle Scholar
  8. [8]
    J.D. Du, D.Y. Ding, W.L. Zhang, Z. Xu, Y.G. Gao, G.Z. Chen, X.H. You, R.Z. Chen, Y.W. Huang, J.S. Tang, Mater. Charact. 142, 252 (2018)CrossRefGoogle Scholar
  9. [9]
    S. Thompson, S.L. Cockcroft, M.A. Wells, Mater. Sci. Technol. 20, 497 (2004)CrossRefGoogle Scholar
  10. [10]
    P. Zhang, Z.M. Li, B.L. Liu, W.J. Ding, L.M. Peng, Mater. Sci. Eng. A 651, 376 (2016)CrossRefGoogle Scholar
  11. [11]
    Y.L. Liu, Y.M. Sun, L. Zhang, Y.H. Zhao, J.J. Wang, C.Z. Liu, Metals 7, 428 (2017)CrossRefGoogle Scholar
  12. [12]
    Y.L. Liu, L. Luo, C.F. Han, L.Y. Ou, J.J. Wang, C.Z. Liu, J. Mater. Sci. Technol. 32, 305 (2016)CrossRefGoogle Scholar
  13. [13]
    J.R.P. Rodrigues, M.L.N.M. Melo, R.G.J. dos Santos, Mater. Sci. 45, 2285 (2010)CrossRefGoogle Scholar
  14. [14]
    L.F. Gomes, B.L. Silva, A. Garcia, J.E. Spinelli, Metall. Mater. Trans. A 48, 1841 (2017)CrossRefGoogle Scholar
  15. [15]
    I. Polmear, D. StJohn, J.F. Nie, M. Qian, Light Alloys, 5th edn. (Elsevier, Boston, 2017), pp. 109–156CrossRefGoogle Scholar
  16. [16]
    I.U. Haq, J.S. Shin, Z.H. Lee, Met. Mater. Int. 10, 89 (2004)CrossRefGoogle Scholar
  17. [17]
    F.G. Coury, E.L. Pires, W. Wolf, F.P. Almeida, A.L. Silva, W.J. Botta, C.S. Kiminami, M.J. Kaufman, J. Alloys Compd. 727, 460 (2017)CrossRefGoogle Scholar
  18. [18]
    G.S. Yi, B.H. Sun, J.D. Poplawsky, Y.K. Zhu, M.L. Free, J. Alloys Compd. 740, 461 (2018)CrossRefGoogle Scholar
  19. [19]
    R. Chen, Y.F. Shi, Q.Y. Xu, B.C. Liu, Trans. Nonferrous Met. Soc. China 24, 1645 (2014)CrossRefGoogle Scholar
  20. [20]
    Y.L. Liu, S.B. Kang, Mater. Sci. Technol. 13, 331 (1997)CrossRefGoogle Scholar
  21. [21]
    V.A. Hosseini, S.G. Shabestari, R. Gholizadeh, Mater. Des. 50, 7 (2013)CrossRefGoogle Scholar
  22. [22]
    S.X. Ji, W.C. Yang, F. Gao, D. Watson, Z.Y. Fan, Mater. Sci. Eng. A 564, 130 (2013)CrossRefGoogle Scholar
  23. [23]
    J. Yan, A.M. Hodge, J. Alloys Compd. 703, 242 (2017)CrossRefGoogle Scholar
  24. [24]
    A. Nicol, Acta Crystallogr. A 6, 285 (1953)CrossRefGoogle Scholar
  25. [25]
    L.D. Calvert, P. Villars, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases (ASTM International, Newbury, 1991)Google Scholar
  26. [26]
    G. Yi, D.A. Cullen, K.C. Littrell, W. Golumbfskie, E. Sundberg, Metall. Mater. Trans. A 48, 2040 (2017)CrossRefGoogle Scholar
  27. [27]
    M. Rappaz, W.J. Boettinger, Acta Mater. 47, 3205 (1999)CrossRefGoogle Scholar
  28. [28]
    S.L. Sobolev, Acta Mater. 60, 2711 (2012)CrossRefGoogle Scholar
  29. [29]
    S.L. Sobolev, L.V. Poluyanov, F. Liu, J. Cryst. Growth 395, 46 (2014)CrossRefGoogle Scholar
  30. [30]
    W.R. Osorio, P.R. Goulart, A. Garcia, G.A. Santos, C.M. Neto, Metall. Mater. Trans. A 37, 2525 (2006)CrossRefGoogle Scholar
  31. [31]
    J.M. Quaresma, C.A. Santos, A. Garcia, Metall. Mater. Trans. A 31, 3167 (2000)CrossRefGoogle Scholar
  32. [32]
    V. Bata, E.V. Pereloma, Acta Mater. 52, 657 (2004)CrossRefGoogle Scholar
  33. [33]
    S.K. Shaha, F. Czerwinski, W. Kasprzak, J. Friedman, D.L. Chen, Mater. Sci. Eng. A 636, 361 (2015)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Hua-Ping Tang
    • 1
  • Qu-Dong Wang
    • 1
    Email author
  • Chuan Lei
    • 1
  • Kui Wang
    • 1
  • Bing Ye
    • 1
  • Hai-Yan Jiang
    • 1
  • Wen-Jiang Ding
    • 1
    • 2
  1. 1.National Engineering Research Center of Light Alloy Net FormingShanghai Jiao Tong UniversityShanghaiChina
  2. 2.State Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations