Advertisement

Acta Metallurgica Sinica (English Letters)

, Volume 32, Issue 12, pp 1449–1458 | Cite as

Effects of Dissimilar Alumina Particulates on Microstructure and Properties of Cold-Sprayed Alumina/A380 Composite Coatings

  • Xiang Qiu
  • Naeem ul Haq Tariq
  • Lu Qi
  • Jun-Rong Tang
  • Xin-Yu Cui
  • Hao Du
  • Ji-Qiang WangEmail author
  • Tian-Ying XiongEmail author
Article
  • 48 Downloads

Abstract

In this study, alumina/A380 composite coatings were fabricated by cold spray. The influence of alumina particulates’ morphology (spherical and irregular) and content on the deposition behavior of the coatings (including surface roughness, surface residual stress, cross-sectional microstructure and microhardness) was investigated. Results revealed that the spherical alumina mainly shows micro-tamping effect during deposition, which result in remarkable low surface roughness and porosity of the coatings. In addition, very low deposition efficiency and good interfacial bonding between the coating and the substrate were achieved. For irregular alumina particles, the embedding of ceramic particulates in the coating was dominant during deposition process, resulting in high retention in the final deposit. However, it showed limited influence on porosity, surface roughness and interfacial bonding of the deposit. The coatings containing irregular alumina particulates exhibited much higher microhardness than those containing spherical alumina due to the higher load-bearing capacity of deposited alumina.

Keywords

Cold spray Alumina particles Microstructure Micro-tamping effect Embedding effect 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51671205 and 51801217).

References

  1. [1]
    T. Peat, A. Galloway, A. Toumpis, P. McNutt, N. Iqbal, Appl. Surf. Sci. 396, 1635 (2017)CrossRefGoogle Scholar
  2. [2]
    M.R. Rokni, C.A. Widener, O.C. Ozdemir, G.A. Crawford, Sur. Coat. Technol. 309, 641 (2017)CrossRefGoogle Scholar
  3. [3]
    H. Assadi, F. Gärtner, T. Stoltenhoff, H. Kreye, Acta Mater. 51, 4379 (2003)CrossRefGoogle Scholar
  4. [4]
    R. Jenkins, S. Yin, B. Aldwell, M. Meyer, R. Lupoi, J. Mater. Sci. Technol. 35, 427 (2019)CrossRefGoogle Scholar
  5. [5]
    H. Assadi, H. Kreye, F. Gärtner, T. Klassen, Acta Mater. 116, 382 (2016)CrossRefGoogle Scholar
  6. [6]
    Y. Tao, T. Xiong, C. Sun, H. Jin, H. Du, T. Li, Appl. Surf. Sci. 256, 261 (2009)CrossRefGoogle Scholar
  7. [7]
    M.R. Rokni, S.R. Nutt, C.A. Widener, V.K. Champagne, R.H. Hrabe, J. Therm. Spray Technol. 26, 1308 (2017)CrossRefGoogle Scholar
  8. [8]
    W. Li, K. Yang, S. Yin, X. Yang, Y. Xu, R. Lupoi, J. Mater. Sci. Technol. 34, 440 (2018)CrossRefGoogle Scholar
  9. [9]
    K. Yang, W. Li, X. Guo, X. Yang, Y. Xu, J. Mater. Sci. Technol. 34, 1570 (2018)CrossRefGoogle Scholar
  10. [10]
    S. Yin, P. Cavaliere, B. Aldwell, R. Jenkins, H.L. Liao, W.Y. Li, R. Lupoi, Addit. Manuf. 21, 628 (2018)CrossRefGoogle Scholar
  11. [11]
    B. Al-Mangour, P. Vo, R. Mongrain, E. Irissou, S. Yue, J. Therm. Spray Technol. 23, 641 (2014)CrossRefGoogle Scholar
  12. [12]
    M.R. Rokni, C.A. Widener, V.K. Champagne, G.A. Crawford, S.R. Nutt, Surf. Coat. Technol. 310, 278 (2017)CrossRefGoogle Scholar
  13. [13]
    B. Dikici, H. Yilmazer, I. Ozdemir, M. Isik, J. Therm. Spray Technol. 25, 704 (2016)CrossRefGoogle Scholar
  14. [14]
    W.Y. Li, C.J. Li, H. Liao, C. Coddet, Appl. Surf. Sci. 253, 5967 (2007)CrossRefGoogle Scholar
  15. [15]
    K. Yang, W. Li, C. Huang, X. Yang, Y. Xu, J. Mater. Sci. Technol. 34, 2167 (2018)CrossRefGoogle Scholar
  16. [16]
    W. Han, X.M. Meng, J. Zhao, J.B. Zhang, Acta Metall. Sin. (Engl. Lett.) 24, 249 (2011)Google Scholar
  17. [17]
    R. Huang, M. Sone, W. Ma, H. Fukanuma, Surf. Coat. Technol. 261, 278 (2015)CrossRefGoogle Scholar
  18. [18]
    J.H. Cho, Y.M. Jin, D.Y. Park, H.J. Kim, I.H. Oh, K.A. Lee, Met. Mater. Int. 17, 157 (2011)CrossRefGoogle Scholar
  19. [19]
    X. Qiu, J.Q. Wang, N.U.H. Tariq, L. Gyansah, J.X. Zhang, T.Y. Xiong, J. Therm. Spray Technol. 26, 1898 (2017)CrossRefGoogle Scholar
  20. [20]
    W.Y. Li, C.L. Yang, H.L. Liao, Mater. Des. 32, 388 (2011)CrossRefGoogle Scholar
  21. [21]
    Y.Y. Wang, B. Normand, N. Mary, M. Yu, H.L. Liao, Surf. Coat. Technol. 315, 314 (2017)CrossRefGoogle Scholar
  22. [22]
    K. Spencer, D.M. Fabijanic, M.X. Zhang, Surf. Coat. Technol. 206, 3275 (2012)CrossRefGoogle Scholar
  23. [23]
    E. Irissou, J.G. Legoux, B. Arsenault, C. Moreau, J. Therm. Spray Technol. 16, 661 (2007)CrossRefGoogle Scholar
  24. [24]
    W.Y. Li, G. Zhang, H.L. Liao, C. Coddet, J. Mater. Process. Technol. 202, 508 (2008)CrossRefGoogle Scholar
  25. [25]
    M. Yu, X.K. Suo, W.Y. Li, Y.Y. Wang, H.L. Liao, Appl. Surf. Sci. 289, 188 (2014)CrossRefGoogle Scholar
  26. [26]
    X.T. Luo, Y.K. Wei, Y. Wang, C.J. Li, Mater. Des. 85, 527 (2015)CrossRefGoogle Scholar
  27. [27]
    E. Sansoucy, P. Marcoux, L. Ajdelsztajn, B. Jodoin, Surf. Coat. Technol. 202, 3988 (2008)CrossRefGoogle Scholar
  28. [28]
    A. Shkodkin, A. Kashirin, O. Klyuev, T. Buzdygar, J. Therm. Spray Technol. 15, 382 (2006)CrossRefGoogle Scholar
  29. [29]
    M. Yandouzi, L. Ajdelsztajn, B. Jodoin, Surf. Coat. Technol. 202, 3866 (2008)CrossRefGoogle Scholar
  30. [30]
    K.I. Triantou, D.I. Pantelis, V. Guipont, M. Jeandin, Wear 336, 96 (2015)CrossRefGoogle Scholar
  31. [31]
    T. Suhonen, T. Varis, S. Dosta, M. Torrell, J.M. Guilemany, Acta Mater. 61, 6329 (2013)CrossRefGoogle Scholar
  32. [32]
    X.L. Zhou, X.K. Wu, J.G. Wang, J.S. Zhang, Acta Metall. Sin. (Engl. Lett.) 24, 43 (2011)Google Scholar
  33. [33]
    X.L. Zhou, X.Y. Su, H. Cui, H.H. Guo, X.K. Wu, J.S. Zhang, Acta Metall. Sin. 44, 1286 (2008). (in Chinese) Google Scholar
  34. [34]
    Y. Bai, Z.H. Wang, X.B. Li, G.S. Huang, C.X. Li, Y. Li, Materials 11, 853 (2018)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xiang Qiu
    • 1
    • 2
  • Naeem ul Haq Tariq
    • 1
    • 3
    • 4
  • Lu Qi
    • 1
    • 2
  • Jun-Rong Tang
    • 1
    • 2
  • Xin-Yu Cui
    • 1
  • Hao Du
    • 1
  • Ji-Qiang Wang
    • 1
    Email author
  • Tian-Ying Xiong
    • 1
    Email author
  1. 1.Institute of Metal Research, Chinese Academy of SciencesShenyangChina
  2. 2.School of Materials Science and EngineeringUniversity of Science and Technology of ChinaShenyangChina
  3. 3.University of Chinese Academy of SciencesBeijingChina
  4. 4.Department of Metallurgy and Materials EngineeringInstitute of Engineering and Applied SciencesNilore, IslamabadPakistan

Personalised recommendations